bbox_marker.action = visualization_msgs::Marker::ADD;
时间: 2024-02-03 09:03:07 浏览: 183
`visualization_msgs::Marker` 中的 `action` 属性指定了可视化消息在rviz中的显示方式。它可以取如下值:
- `visualization_msgs::Marker::ADD`:添加新的可视化消息。
- `visualization_msgs::Marker::DELETE`:删除指定 ID 的可视化消息。
- `visualization_msgs::Marker::DELETEALL`:删除所有可视化消息。
- `visualization_msgs::Marker::MODIFY`:修改指定 ID 的可视化消息。
在这个例子中,我们创建了一个名为 `bbox_marker` 的 `visualization_msgs::Marker` 对象,并将其 `action` 属性设置为 `visualization_msgs::Marker::ADD`。这意味着我们要添加一个新的可视化消息。当我们将这个消息发布到 ROS 的话题上时,rviz 将显示这个可视化消息。如果我们想要修改或删除这个可视化消息,可以修改或删除该消息的 ID 并将 `action` 属性设置为 `visualization_msgs::Marker::MODIFY` 或 `visualization_msgs::Marker::DELETE`。
相关问题
class DoubleFastRCNNOutputLayers(nn.Module): def __init__( self, cfg, input_size, num_classes, cls_agnostic_bbox_reg, box_dim=4 ): super(DoubleFastRCNNOutputLayers, self).__init__() if not isinstance(input_size, int): input_size = np.prod(input_size) self.cls_score = nn.Linear(input_size, num_classes + 1) num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim) nn.init.normal_(self.cls_score.weight, std=0.01) nn.init.normal_(self.bbox_pred.weight, std=0.001) for l in [self.cls_score, self.bbox_pred]: nn.init.constant_(l.bias, 0) self._do_cls_dropout = cfg.MODEL.ROI_HEADS.CLS_DROPOUT self._dropout_ratio = cfg.MODEL.ROI_HEADS.DROPOUT_RATIO def forward(self, x_s, x_l): if x_s.dim() > 2: x_s = torch.flatten(x_s, start_dim=1) if x_l.dim() > 2: x_l = torch.flatten(x_l, start_dim=1) proposal_deltas = self.bbox_pred(x_l) if self._do_cls_dropout: x_s = F.dropout(x_s, self._dropout_ratio, training=self.training) scores = self.cls_score(x_s) return scores, proposal_deltas
这段代码是一个双输入的Fast R-CNN输出层的实现,其中包括一个分类得分层和一个边界框回归层。它接受两个输入x_s和x_l,分别代表短边和长边的特征。在前向传播时,它首先对输入进行扁平化处理,然后通过bbox_pred层获得边界框预测值,通过cls_score层获得分类得分。在进行分类得分的计算时,可以进行dropout操作来防止过拟合。最终,返回分类得分和边界框预测值。
import open3d as o3d import numpy as np pcd = o3d.io.read_point_cloud("data.pcd") points = np.asarray(pcd.points) bbox = pcd.get_axis_aligned_bounding_box() bbox_points = np.asarray(bbox.get_box_points()) vis = o3d.visualization.Visualizer() vis.create_window() vis.add_geometry(pcd) bbox_lines = [[0,1],[1,2],[2,3],[3,0], [4,5],[5,6],[6,7],[7,4], [0,4],[1,5],[2,6],[3,7]] bbox_colors = [[1,0,0] for i in range(len(bbox_lines))] line_set = o3d.geometry.LineSet( points=o3d.utility.Vector3dVector(bbox_points), lines=o3d.utility.Vector2iVector(bbox_lines), ) line_set.colors = o3d.utility.Vector3dVector(bbox_colors) vis.add_geometry(line_set) labels = np.zeros(points.shape[0]) eps = 0.1 min_points = 10 for i in range(points.shape[0]): if labels[i] != 0: continue neighbors = np.where(np.sum((points - points[i])2, axis=1) < eps2)[0] if neighbors.shape[0] < min_points: labels[i] = -1 else: labels[neighbors] = i+1 cluster_colors = [[np.random.uniform(0, 1), np.random.uniform(0, 1), np.random.uniform(0, 1)] for i in range(np.max(labels))] for i in range(np.max(labels)): if i == -1: continue cluster_points = points[labels==i,:] cluster_pcd = o3d.geometry.PointCloud() cluster_pcd.points = o3d.utility.Vector3dVector(cluster_points) cluster_pcd.paint_uniform_color(cluster_colors[i]) vis.add_geometry(cluster_pcd) vis.run() vis.destroy_window() open3d未响应
这段代码使用了Open3D库来读取点云数据,并进行基于DBSCAN算法的聚类,并且还使用了Open3D的可视化功能来显示点云和聚类结果。但是,你提供的代码有一些语法错误,可能导致Open3D无法运行。你可以尝试以下修改:
1. 在第9行之前添加 `import open3d.visualization`,以便使用Open3D的可视化功能。
2. 在第22行之前添加 `import random`,以便使用 `np.random.uniform()` 函数。
3. 在第14行中,将 `(points - points[i])2` 修改为 `(points - points[i])**2`,以便进行平方运算。
在修改完成后,你可以尝试重新运行代码,并检查是否能够正常运行。如果仍然有问题,你可以提供更详细的错误信息或代码上下文,以便更好地帮助你解决问题。
阅读全文