data = np.vstack([x, y, z]).T
时间: 2023-11-28 22:05:18 浏览: 79
`np.vstack([x, y, z])`表示将x、y、z三个数组按垂直方向堆叠起来,形成一个3行N列的数组,其中N是x、y、z数组的长度,3表示三个数组。最后通过`.T`对这个数组进行转置,将其变成一个N行3列的数组,表示N个三维空间中的点的坐标。
例如,如果x、y、z都是长度为5的一维数组,那么`np.vstack([x, y, z])`的结果是一个3行5列的数组,表示5个三维空间中的点的坐标。转置后的结果是一个5行3列的数组,每一行代表一个点的坐标。
这里使用`np.vstack`函数是为了方便将x、y、z三个数组组合成一个三维坐标数组,如果你的数据已经是一个N行3列的数组,就不需要使用`np.vstack`了。
相关问题
import scipy.io as sio from sklearn import svm import numpy as np import matplotlib.pyplot as plt data=sio.loadmat('AllData') labels=sio.loadmat('label') print(data) class1 = 0 class2 = 1 idx1 = np.where(labels['label']==class1)[0] idx2 = np.where(labels['label']==class2)[0] X1 = data['B007FFT0'] X2 = data['B014FFT0'] Y1 = labels['label'][idx1].reshape(-1, 1) Y2 = labels['label'][idx2].reshape(-1, 1) ## 随机选取训练数据和测试数据 np.random.shuffle(X1) np.random.shuffle(X2) # Xtrain = np.vstack((X1[:200,:], X2[:200,:])) # Xtest = np.vstack((X1[200:300,:], X2[200:300,:])) # Ytrain = np.vstack((Y1[:200,:], Y2[:200,:])) # Ytest = np.vstack((Y1[200:300,:], Y2[200:300,:])) # class1=data['B007FFT0'][0:1000, :] # class2=data['B014FFT0'][0:1000, :] train_data=np.vstack((X1[0:200, :],X2[0:200, :])) test_data=np.vstack((X1[200:300, :],X2[200:300, :])) train_labels=np.vstack((Y1[:200,:], Y2[:200,:])) test_labels=np.vstack((Y1[200:300,:], Y2[200:300,:])) ## 训练SVM模型 clf=svm.SVC(kernel='linear', C=1000) clf.fit(train_data,train_labels.reshape(-1)) ## 用测试数据测试模型准确率 train_accuracy = clf.score(train_data, train_labels) test_accuracy = clf.score(test_data, test_labels) # test_pred=clf.predict(test_data) # accuracy=np.mean(test_pred==test_labels) # print("分类准确率为:{:.2F}%".fromat(accuracy*100)) x_min,x_max=test_data[:,0].min()-1,test_data[:,0].max()+1 y_min,y_max=test_data[:,1].min()-1,test_data[:,1].max()+1 xx,yy=np.meshgrid(np.arange(x_min,x_max,0.02),np.arange(y_min,y_max,0.02)) # 生成一个由xx和yy组成的网格 # X, Y = np.meshgrid(xx, yy) # 将网格展平成一个二维数组xy xy = np.vstack([xx.ravel(), yy.ravel()]).T # Z = clf.decision_function(xy).reshape(xx.shape) # z=clf.predict(np.c_[xx.ravel(),yy.ravel()]) z=xy.reshape(xx.shape) plt.pcolormesh(xx.shape) plt.xlim(xx.min(),xx.max()) plt.ylim(yy.min(),yy.max()) plt.xtickes(()) plt.ytickes(()) # # 画出分界线 # axis.contour(X, Y, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--']) # axis.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,linewidth=1, facecolors='none') plt.scatter(test_data[:,0],test_data[:1],c=test_labels,cmap=plt.cm.Paired) plt.scatter(clf.support_vectors_[:,0],clf.support_vectors_[:,1],s=80,facecolors='none',linewidths=1.5,edgecolors='k') plt.show()处理一下代码出错问题
代码中出现了几个错误:
1. 在最后几行代码中,plt.pcolormesh(xx.shape)应该改为plt.pcolormesh(xx, yy, z),因为需要绘制的是网格xy上对应的值z。
2. 在plt.xtickes(())和plt.ytickes(())中,xtickes和ytickes应该改为xticks和yticks,因为正确的函数名是xticks和yticks。
3. 在plt.scatter(test_data[:,0],test_data[:1],c=test_labels,cmap=plt.cm.Paired)中,test_data[:,0]和test_data[:1]应该改为test_data[:,0]和test_data[:,1],因为需要绘制的是测试数据的两个特征值。
4. 在画出分界线的代码中,应该将注释的代码取消注释,即将axis.contour(X, Y, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--'])的注释去掉。
def ys_plot_model(X, y, model): plt.figure(figsize=(8,6)) bx = plt.subplot(111) # bx.set_ylabel('Intensity', )#fontsize = 16, # bx.set_xlabel('Diffraction angle 2$\Theta$ (deg.)', )#fontsize = 16 plt.axis([axl, axr, byl, byh]) model.cpu() X=X.cpu() mesh1 = np.arange(axl, axr, 0.01) mesh2 = np.arange(byl, byh, 0.01) xx, yy = np.meshgrid(mesh1, mesh2) with torch.no_grad(): data = torch.from_numpy(np.vstack((xx.reshape(-1), yy.reshape(-1))).T).float().cpu() Z = model(data).detach() Z = np.argmax(Z, axis=1).reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.rainbow, alpha=0.3) yue_plot_data(X, y, axl,axr,byl,byh) 是什么意思
这段代码定义了一个函数 ys_plot_model,这个函数有三个输入参数:X、y 和 model。接着这个函数定义了一个图形对象,大小为 8*6,然后在这个图形对象上绘制一个子图,编号为 111,也就是只有一个子图。
阅读全文
相关推荐
















