matlab对抗网络代码
时间: 2023-08-31 18:10:42 浏览: 138
以下是一个简单的MATLAB实现对抗网络(Adversarial Network)的代码示例:
```matlab
% 加载数据
[trainImages, trainLabels] = mnist.loadTrainSet();
[testImages, testLabels] = mnist.loadTestSet();
% 定义生成器网络
generator = [
imageInputLayer([100 1 1], 'Normalization', 'none')
fullyConnectedLayer(7*7*128)
reshapeLayer([7 7 128])
transposedConv2dLayer(4, 128, 'Stride', 2, 'Cropping', 1)
batchNormalizationLayer
reluLayer
transposedConv2dLayer(4, 64, 'Stride', 2, 'Cropping', 1)
batchNormalizationLayer
reluLayer
transposedConv2dLayer(4, 1, 'Stride', 2, 'Cropping', 1)
tanhLayer
];
% 定义判别器网络
discriminator = [
imageInputLayer([28 28 1])
convolution2dLayer(5, 32, 'Padding', 2)
batchNormalizationLayer
leakyReluLayer(0.2)
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(5, 64, 'Padding', 2)
batchNormalizationLayer
leakyReluLayer(0.2)
maxPooling2dLayer(2, 'Stride', 2)
fullyConnectedLayer(1024)
leakyReluLayer(0.2)
fullyConnectedLayer(1)
sigmoidLayer
];
% 定义整个对抗网络
gan = ganNetwork(generator, discriminator);
% 设置训练选项
options = trainingOptions('sgdm', ...
'MaxEpochs', 100, ...
'MiniBatchSize', 128, ...
'Plots', 'training-progress');
% 训练生成器和判别器
[gan, generatorLoss, discriminatorLoss] = trainNetwork(trainImages, gan, options);
% 生成一些假图像
noise = randn(100, 1, 1, 'single');
fakeImages = predict(generator, noise);
% 显示生成的图像
montage(fakeImages, 'Size', [10 10]);
```
这个示例中,我们使用了MNIST数据集,定义了一个简单的生成器和判别器网络,并且训练了整个对抗网络。在训练结束后,我们使用生成器生成了一些假图像,并通过montage函数将它们显示出来。
阅读全文