high_corr = find(corr_matrix >0.9); [x, y] = ind2sub(size(corr_matrix), high_corr); high_corr = [corr_matrix.Properties.RowNames(x(x~=y & x<y)), corr_matrix.Properties.RowNames(y(x~=y & x<y))]; for i = 1:length(high_corr) feat1 = high_corr{i, 1}; feat2 = high_corr{i, 2}; X = data(:, {feat1, feat2}); y = data.y; model = fitlm(X, y); fprintf('%s and %s: R^2 = %.2f\n', feat1, feat2, model.Rsquared.Ordinary); end什么意思
时间: 2024-01-14 09:03:46 浏览: 100
交叉相关法实现图像精准匹配.rar_交叉相关matlab_交叉相关匹配_图像互相关_图像配准matlab_精准 图像匹配
这段代码用于寻找数据中相关性(相关系数)大于0.9的特征,并计算它们之间的线性回归模型的R^2值。
具体来说,代码的功能是:
1. 找到相关系数大于0.9的特征对,将它们保存在 `high_corr` 中。
2. 对于每一个特征对 `(feat1, feat2)`,将这两个特征作为自变量,将目标变量 `y` 作为因变量,拟合一条线性回归模型,并计算出模型的R^2值。
3. 输出每一个特征对 `(feat1, feat2)` 对应的R^2值。
其中,`high_corr` 是一个包含相关性大于0.9的特征对的 `cell` 数组,每一个元素是一个包含两个特征名的 `cell` 数组。`data` 是一个包含了特征和目标变量的 `table` 类型数据,其中 `data(:, {feat1, feat2})` 表示选取数据中的 `feat1` 和 `feat2` 两个特征。`fitlm` 函数用于拟合线性回归模型,`model.Rsquared.Ordinary` 表示线性回归模型的R^2值。
阅读全文