pre_node_nums = np.array([1*3*3, 16*3*3, 16*3*3, 32*3*3, 32*3*3, 64*3*3, 64*3*3, hidden_size]) wight_init_scales = np.sqrt(2.0 / pre_node_nums) # 使用ReLU的情况下推荐的初始值 self.params = {} pre_channel_num = input_dim[0] for idx, conv_param in enumerate([conv_param_1, conv_param_2, conv_param_3, conv_param_4, conv_param_5, conv_param_6]): self.params['W' + str(idx+1)] = wight_init_scales[idx] * np.random.randn(conv_param['filter_num'], pre_channel_num, conv_param['filter_size'], conv_param['filter_size']) self.params['b' + str(idx+1)] = np.zeros(conv_param['filter_num']) pre_channel_num = conv_param['filter_num'] self.params['W7'] = wight_init_scales[6] * np.random.randn(64*4*4, hidden_size) self.params['b7'] = np.zeros(hidden_size) self.params['W8'] = wight_init_scales[7] * np.random.randn(hidden_size, output_size) self.params['b8'] = np.zeros(output_size)
时间: 2024-04-02 09:34:42 浏览: 58
Count3Quit2.rar_count3Quit2_count3quit
这段代码是一个卷积神经网络(Convolutional Neural Network, CNN)的初始化参数部分。具体来说,它定义了一个包含八层的CNN,其中前六层是卷积层,第七层是全连接层,第八层是输出层。每一层都有对应的权重矩阵和偏置向量,这些参数是通过使用高斯分布随机初始化得到的。其中,参数pre_node_nums定义了每一层的输入节点数目,wight_init_scales是权重矩阵的初始化缩放因子,input_dim是输入数据的维度,conv_param_1到conv_param_6是对应的卷积层的参数,hidden_size是全连接层的输出节点数目,output_size是输出层的节点数目。这段代码的作用是初始化CNN的参数,为后续的模型训练做准备。
阅读全文