.columns.to_list()方法需要pandas什么版本

时间: 2024-02-16 16:03:46 浏览: 168
`.columns.to_list()` 方法需要 Pandas 版本 0.24.0 或更高版本才能使用。在较旧的 Pandas 版本中,可以使用 `.columns.tolist()` 方法来获取 DataFrame 的所有列名,它的功能与 `.columns.to_list()` 方法相同。如果你的 Pandas 版本较旧,可以使用以下命令来获取列名列表: ``` import pandas as pd print(df.columns.tolist()) ``` 这将会输出一个包含 df 所有列名的列表。
相关问题

columns = feature_data_df.columns.to_list()解释一下

这行代码是将 pandas DataFrame 数据结构中的列名提取出来,并将其转换为 Python 列表格式。具体而言,feature_data_df 是一个 pandas DataFrame 数据结构,它包含了若干列数据,即不同的特征值。columns 属性是 DataFrame 类的一个属性,它返回一个包含所有列名的 pandas 索引对象。为了将这个索引对象转换为 Python 列表,我们调用了 to_list() 方法,该方法将返回一个包含所有列名的列表。最终,columns 变量将保存这个列表。这个代码在数据分析和处理中经常用到,可以方便地对 DataFrame 中的各个列进行遍历、访问或操作。

Traceback (most recent call last): File "E:\anaconda3\lib\site-packages\pandas\core\indexes\base.py", line 3802, in get_loc return self._engine.get_loc(casted_key) File "pandas\_libs\index.pyx", line 138, in pandas._libs.index.IndexEngine.get_loc File "pandas\_libs\index.pyx", line 165, in pandas._libs.index.IndexEngine.get_loc File "pandas\_libs\hashtable_class_helper.pxi", line 5745, in pandas._libs.hashtable.PyObjectHashTable.get_item File "pandas\_libs\hashtable_class_helper.pxi", line 5753, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: '111' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "D:\python project\main.py", line 8, in <module> x_labels = data['111'].tolist() File "E:\anaconda3\lib\site-packages\pandas\core\frame.py", line 3807, in __getitem__ indexer = self.columns.get_loc(key) File "E:\anaconda3\lib\site-packages\pandas\core\indexes\base.py", line 3804, in get_loc raise KeyError(key) from err KeyError: '111'

这个错误通常是由于在DataFrame中找不到指定的列名引起的。根据你提供的错误信息,看起来你的DataFrame中不存在名为 `'111'` 的列。 请确保你在使用`data['x_column_name']`这一行代码时,将 `'x_column_name'` 替换为你实际使用的列名。检查一下你的Excel文件或DataFrame对象中是否存在一个名为 `'111'` 的列。如果没有,请将代码中的 `'x_column_name'` 替换为正确的列名。 另外,还要确保Excel文件中包含正确的数据,并且通过正确的路径读取到了该文件。检查一下文件路径是否正确,并确保DataFrame中包含正确的列名和数据,以便能够正确地绘制柱状图。
阅读全文

相关推荐

帮我解释一下错误:KeyError Traceback (most recent call last) File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:3802, in Index.get_loc(self, key, method, tolerance) 3801 try: -> 3802 return self._engine.get_loc(casted_key) 3803 except KeyError as err: File ~\anaconda3\lib\site-packages\pandas\_libs\index.pyx:138, in pandas._libs.index.IndexEngine.get_loc() File ~\anaconda3\lib\site-packages\pandas\_libs\index.pyx:165, in pandas._libs.index.IndexEngine.get_loc() File pandas\_libs\hashtable_class_helper.pxi:5745, in pandas._libs.hashtable.PyObjectHashTable.get_item() File pandas\_libs\hashtable_class_helper.pxi:5753, in pandas._libs.hashtable.PyObjectHashTable.get_item() KeyError: 'is_acc' The above exception was the direct cause of the following exception: KeyError Traceback (most recent call last) Cell In[2], line 2 1 import statsmodels.api as sm ----> 2 y = data['is_acc'] 3 X = data[['ST_MP', 'Length', 'NLane', 'LaneWidth', 'LShoulderWidth', 'RShoulderWidth', 'AADT']] 4 X = sm.add_constant(X) File ~\anaconda3\lib\site-packages\pandas\core\frame.py:3807, in DataFrame.__getitem__(self, key) 3805 if self.columns.nlevels > 1: 3806 return self._getitem_multilevel(key) -> 3807 indexer = self.columns.get_loc(key) 3808 if is_integer(indexer): 3809 indexer = [indexer] File ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py:3804, in Index.get_loc(self, key, method, tolerance) 3802 return self._engine.get_loc(casted_key) 3803 except KeyError as err: -> 3804 raise KeyError(key) from err 3805 except TypeError: 3806 # If we have a listlike key, _check_indexing_error will raise 3807 # InvalidIndexError. Otherwise we fall through and re-raise 3808 # the TypeError. 3809 self._check_indexing_error(key) KeyError: 'is_acc'In [ ]: ​

帮我解读下这个代码:import csv import os import numpy as np import pandas as pd import pymysql from pymysql import connect # %% # drug_table = pd.read_excel('./data/drug.xlsx') drug_table_an = pd.read_excel('./data/mimiciv_feature_info.xlsx', sheet_name='antibiotic') drug_table_sa = pd.read_excel('./data/mimiciv_feature_info.xlsx', sheet_name='sedatives_and_analgesics') drug_table_co = pd.read_excel('./data/mimiciv_feature_info.xlsx', sheet_name='anticoagulant') prescriptions = pd.read_csv('/data/check_in/EHR_data/MIMIC_III/CSV/PRESCRIPTIONS.csv') item = pd.read_csv('/data/check_in/EHR_data/MIMIC_III/CSV/D_ITEMS.csv') labitem = pd.read_csv('/data/check_in/EHR_data/MIMIC_III/CSV/D_LABITEMS.csv') columns_pre = prescriptions.columns.tolist() columns_item = item.columns.tolist() columns_labitem = labitem.columns.tolist() # drugs = (drug_table['anticoagulant'].to_list()+drug_table['antiplatelet'].to_list())[:-4] drugs = ['barbital' ,'zepam' ,'zolam' ,'zolpidem' ,'propofol' ,'dexmedetomidine' ,'pentobarbital' ,'clonazepam' ,'alprazolam' ,'estazolam' ,'Zolpidem Tartrate'] drug_test_tsv = open('drug_patients_sedative.csv', 'w', newline='', encoding='utf-8') drug_test = csv.writer(drug_test_tsv, delimiter=',') drug_test.writerow(columns_pre) item_test_tsv = open('item_patients_sedative.csv', 'w', newline='', encoding='utf-8') item_test = csv.writer(item_test_tsv, delimiter=',') item_test.writerow(columns_item) labitem_test_tsv = open('labitem_patients_sedative.csv', 'w', newline='', encoding='utf-8') labitem_test = csv.writer(labitem_test_tsv, delimiter=',') labitem_test.writerow(columns_labitem) # import pdb;pdb.set_trace() for drug in drugs: # print(type(drug)) sql = "select * FROM PRESCRIPTIONS where drug like '%"+ drug + "%' or drug_name_poe like '%"+ drug + "%' or drug_name_generic like '%"+ drug + "%'" print(sql) conn = connect(host='127.0.0.1', port=3306, user='root', passwd='root', db='mimiciii') cursor = conn.cursor() cursor.execute(sql) data_tmp = cursor.fetchall() # print(data_tmp is None) if len(data_tmp) != 0: for data_cur in data_tmp: print(data_cur[1], data_cur[2], data_cur[3], data_cur[7], data_cur[8], data_cur[9]) drug_test.writerow(list(data_cur)) # import pdb;pdb.set_trace() for drug in drugs: # print(type(drug)) sql = "select * FROM D_ITEMS where label like '%{}%'" .format(drug) print(sql) conn1 = connect(host='127.0.0.1', port=3306, user='root', passwd='root', db='mimiciii') cursor1 = conn1.cursor() cursor1.execute(sql) data_tmp = cursor1.fetchall() if len(data_tmp) != 0: for data_cur in data_tmp: print(data_cur[1], data_cur[2]) item_test.writerow(list(data_cur)) # import pdb;pdb.set_trace() for drug in drugs: # print(type(drug)) sql = "select * FROM D_LABITEMS where label like '%{}%'" .format(drug) print(sql) conn1 = connect(host='127.0.0.1', port=3306, user='root', passwd='root', db='mimiciii') cursor1 = conn1.cursor() cursor1.execute(sql) data_tmp = cursor1.fetchall() if len(data_tmp) != 0: for data_cur in data_tmp: print(data_cur[1], data_cur[2]) labitem_test.writerow(list(data_cur)) # import pdb;pdb.set_trace() # %% import pandas as pd drug = pd.read_csv('drug_patients_sedative.csv') print(drug.DRUG.unique()) # %% print(drug.DRUG_NAME_POE.unique()) # %% print(drug.DRUG_NAME_GENERIC.unique()) # %%

请在在以下代码中添加可以标准化新字段“R”、“F”、“M”数据的代码:import numpy as np import pandas as pd import matplotlib.pyplot as plt from datetime import datetime plt.rcParams["font.sans-serif"]=["Microsoft YaHei"] #设置字体 plt.rcParams["axes.unicode_minus"]=False #解决"-"负号乱码问题 import warnings warnings.filterwarnings('ignore') import pandas as pd # 读取Excel文件,并将“订单”工作表读取为数据框 df = pd.read_excel('/home/mw/input/superstore8223/商城详细销售数据.xls', sheet_name='订单') # 输出数据框的基本信息 print("数据框的行数:", df.shape[0]) # 行数 print("数据框的列数:", df.shape[1]) # 列数 print("数据框的字段名称:", df.columns.tolist()) # 字段名称 print("数据框的字段类型:", df.dtypes.tolist()) # 字段类型 print("数据框的前5行:\n", df.head()) # 前5行数据 df = pd.read_excel('/home/mw/input/superstore8223/商城详细销售数据.xls') df_rfm = df.groupby('客户 ID').agg({'销售额':sum,'订单日期':[pd.Series.nunique,'max']}) ##计算 F、M df_rfm.columns = df_rfm.columns.droplevel() df_rfm.columns = ['Amount','Frequency','Time'] df_rfm['Amount'] = df_rfm['Amount'].map(lambda x:round(x,2)) statistics_date = datetime.strptime('2019-01-06',"%Y-%m-%d") df_rfm['Last_purchase'] = df_rfm['Time'].map(lambda x:(statistics_date - x).days) ##计算 R data = df_rfm[['Last_purchase','Frequency','Amount']] data.columns = ['R','F','M'] data.to_excel('RFM_data.xlsx')

最新推荐

recommend-type

pandas大数据分析笔记.docx

pandas大数据分析笔记 pandas 是 Python 中一个功能强大且流行的数据分析库,提供了高效的数据结构和数据分析工具。本笔记将对 pandas 的常用 API、数据导入、数据输出、查看数据、索引、数据清洗、排序、筛选、...
recommend-type

python pandas读取csv后,获取列标签的方法

column_headers_array = df.columns.values.tolist() ``` 这样,`column_headers_array`将是一个包含字符串的列表,与`column_headers_list`相同。 在处理数据时,了解如何访问和操作列标签是非常重要的,因为它们...
recommend-type

pandas.DataFrame删除/选取含有特定数值的行或列实例

本文将详细讲解如何使用`pandas.DataFrame`来删除或选取含有特定数值的行或列。 1. **删除/选取含有特定数值的行** 在`DataFrame`中,我们可以使用布尔索引来选取或移除特定条件的行。例如,如果想要删除或选取`A`...
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【损失函数与批量梯度下降】:分析批量大小对损失函数影响,优化模型学习路径

![损失函数(Loss Function)](https://img-blog.csdnimg.cn/20190921134848621.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80Mzc3MjUzMw==,size_16,color_FFFFFF,t_70) # 1. 损失函数与批量梯度下降基础 在机器学习和深度学习领域,损失函数和批量梯度下降是核心概念,它们是模型训练过程中的基石。理解它们的基础概念对于构建