首页
config_class.from_pretrained
config_class.from_pretrained
时间: 2023-03-24 08:03:17
浏览: 184
config_system_switchs.txt
立即下载
config_system_switchs.txt
这是一个关于使用预训练模型的配置类的问题,我可以回答。config_class.from_pretrained是一个方法,用于从预训练模型中加载配置类。它可以帮助我们快速地使用预训练模型进行下游任务的微调。
阅读全文
相关推荐
config_sample.inc.php
config_sample.inc.php
serverconfig_dec.zip
serverconfig_dec.zip
Traceback (most recent call last): File "/home/nano/Downloads/chatglm6B-int4/web_demo.py", line 6, in <module> model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda() File "/home/nano/.local/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py", line 441, in from_pretrained config, kwargs = AutoConfig.from_pretrained( File "/home/nano/.local/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py", line 915, in from_pretrained return config_class.from_pretrained(pretrained_model_name_or_path, **kwargs) File "/home/nano/.local/lib/python3.10/site-packages/transformers/configuration_utils.py", line 553, in from_pretrained return cls.from_dict(config_dict, **kwargs) File "/home/nano/.local/lib/python3.10/site-packages/transformers/configuration_utils.py", line 696, in from_dict config = cls(**config_dict) File "/home/nano/.cache/huggingface/modules/transformers_modules/THUDM/chatglm-6b/619e736c6d4cd139840579c5482063b75bed5666/configuration_chatglm.py", line 98, in __init__ super().__init__( File "/home/nano/.local/lib/python3.10/site-packages/transformers/configuration_utils.py", line 336, in __init__ import torch File "/home/nano/.local/lib/python3.10/site-packages/torch/__init__.py", line 229, in <module> from torch._C import * # noqa: F403 ImportError: /home/nano/.local/lib/python3.10/site-packages/torch/lib/../../torch.libs/libgomp-d22c30c5.so.1.0.0: cannot allocate memory in static TLS block
这个错误提示表明在运行代码时,系统无法在静态TLS(Thread-Local Storage)块中分配内存。这可能是由于系统内存不足导致的。 你可以尝试以下方法解决这个问题: 1. 重新启动机器:有时候,系统内存不足可能是由于...
运行模型后提示Traceback (most recent call last): File "E:\data\ChatGPT\ChatGPT_Test.py", line 9, in <module> model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium",padding_mode="left") File "C:\Users\MIS_L\AppData\Roaming\Python\Python311\site-packages\transformers\models\auto\auto_factory.py", line 471, in from_pretrained return model_class.from_pretrained( File "C:\Users\MIS_L\AppData\Roaming\Python\Python311\site-packages\transformers\modeling_utils.py", line 2498, in from_pretrained model = cls(config, *model_args, **model_kwargs) TypeError: GPT2LMHeadModel.__init__() got an unexpected keyword argument 'padding_mode',需要如何修改
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium", padding_mode="left") 修改后的代码: python model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") ...
class Model(nn.Module): def __init__(self, config): super(Model, self).__init__() if config.embedding_pretrained is not None: self.embedding = nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False) else: self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1) self.lstm = nn.LSTM(config.embed, config.hidden_size, config.num_layers, bidirectional=True, batch_first=True, dropout=config.dropout) self.fc = nn.Linear(config.hidden_size * 2, config.num_classes) def forward(self, x): x, _ = x out = self.embedding(x) # [batch_size, seq_len, embeding]=[128, 32, 300] out, _ = self.lstm(out) out = self.fc(out[:, -1, :]) # 句子最后时刻的 hidden state return out
这段代码是一个基于 LSTM 的文本分类模型的实现,模型的输入是一个由文本数据构成的批次(batch),输出是这个批次中每个文本数据的分类结果。在该模型中,首先根据配置信息创建了一个 Embedding 层,用于将每个词汇...
class Model(nn.Module): def init(self, config): super(Model, self).init() if config.embedding_pretrained is not None: self.embedding = nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False) else: self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1) self.lstm = nn.LSTM(config.embed, config.hidden_size, config.num_layers, bidirectional=True, batch_first=True, dropout=config.dropout) self.fc = nn.Linear(config.hidden_size * 2, config.num_classes) def forward(self, x): x, _ = x out = self.embedding(x) # [batch_size, seq_len, embeding]=[128, 32, 300] out, _ = self.lstm(out) out = self.fc(out[:, -1, :]) # 句子最后时刻的 hidden state return out
这段代码是一个PyTorch的模型定义,其中包括embedding层、LSTM层和全连接层。模型的输入是x,输出是out。其中,输入x的形状为[batch_size, seq_len],表示一批输入数据中每个序列的长度为seq_len,总共有batch_size...
Traceback (most recent call last): File “D:\one-click-installers-main\text-generation-webui\server.py”, line 68, in load_model_wrapper shared.model, shared.tokenizer = load_model(shared.model_name, loader) File “D:\one-click-installers-main\text-generation-webui\modules\models.py”, line 78, in load_model output = load_func_maploader File “D:\one-click-installers-main\text-generation-webui\modules\models.py”, line 218, in huggingface_loader model = LoaderClass.from_pretrained(checkpoint, **params) File “D:\one-click-installers-main\installer_files\env\lib\site-packages\transformers\models\auto\auto_factory.py”, line 456, in from_pretrained config, kwargs = AutoConfig.from_pretrained( File “D:\one-click-installers-main\installer_files\env\lib\site-packages\transformers\models\auto\configuration_auto.py”, line 947, in from_pretrained trust_remote_code = resolve_trust_remote_code( File “D:\one-click-installers-main\installer_files\env\lib\site-packages\transformers\dynamic_module_utils.py”, line 553, in resolve_trust_remote_code raise ValueError( ValueError: Loading models\chatglm2-6b-int4 requires you to execute the configuration file in that repo on your local machine. Make sure you have read the code there to avoid malicious use, then set the option to remove this error.trust_remote_code=True
这个错误提示表明加载模型时出现了问题。它指出需要在本地执行模型配置文件来解决此错误。您可以尝试按照以下步骤操作: 1. 确保您已经将模型的配置文件(chatglm2-6b-int4)下载到本地。 2. 在本地运行配置文件并...
class MyBertModel(nn.Module): def __init__(self, config): super(MyBertModel, self).__init__() self.bert = BertModel.from_pretrained(config.bert_path) for param in self.bert.parameters(): param.requires_grad = True self.fc = nn.Linear(config.hidden_size, config.num_classes) def forward(self, x): context = x[0] # 输入的句子 mask = x[2] # 对padding部分进行mask,和句子一个size,padding部分用0表示,如:[1, 1, 1, 1, 0, 0] _, pooled = self.bert(context, attention_mask=mask, output_all_encoded_layers=False) out = self.fc(pooled) return out
这个模型使用了预训练的 BERT 模型,通过 BertModel.from_pretrained(config.bert_path) 加载预训练模型。然后,使用一个全连接层 nn.Linear 将 BERT 的输出映射到指定的类别个数上,即 config.num_classes。 ...
class EntityRankerClassifier(nn.Module): def __init__(self, n_classes, PRE_TRAINED_MODEL_NAME): super(EntityRankerClassifier, self).__init__() self.bert = AutoModel.from_pretrained(PRE_TRAINED_MODEL_NAME) self.drop = nn.Dropout(p=0.3) self.out = nn.Linear(self.bert.config.hidden_size, n_classes) def forward(self, input_ids, attention_mask): _, pooled_output = self.bert( input_ids=input_ids, attention_mask=attention_mask, return_dict=False ) output = self.drop(pooled_output) return self.out(output)
2. 模型结构:该模型使用预训练的BERT模型作为编码器,通过AutoModel.from_pretrained函数加载预训练模型,并将输入的文本序列input_ids和注意力掩码attention_mask传入BERT模型中,得到BERT模型的输出。这里使用的...
为以下代码写注释:class TransformerClassifier(torch.nn.Module): def __init__(self, num_labels): super().__init__() self.bert = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=num_labels) # print(self.bert.config.hidden_size) #768 self.dropout = torch.nn.Dropout(0.1) self.classifier1 = torch.nn.Linear(640, 256) self.classifier2 = torch.nn.Linear(256, num_labels) self.regress1 = torch.nn.Linear(640, 256) self.regress2 = torch.nn.Linear(256, 2) self.regress3 = torch.nn.Linear(640, 256) self.regress4 = torch.nn.Linear(256, 2) # self.regress3 = torch.nn.Linear(64, 1) # self.regress3 = torch.nn.Linear(640, 256) # self.regress4 = torch.nn.Linear(256, 1) # self.soft1 = torch.nn.Softmax(dim=1) def forward(self, input_ids, attention_mask, token_type_ids): # outputs = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) # pooled_output = outputs.logits # # pooled_output = self.dropout(pooled_output) # # logits = self.classifier(pooled_output) outputs = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) logits = outputs.logits clas = F.relu(self.classifier1(logits)) clas = self.classifier2(clas) death = F.relu(self.regress1(logits)) # xingqi = F.relu(self.regress2(xingqi)) death = self.regress2(death) life = F.relu(self.regress3(logits)) # xingqi = F.relu(self.regress2(xingqi)) life = self.regress4(life) # fakuan = F.relu(self.regress3(logits)) # fakuan = self.regress4(fakuan) # print(logits.shape) # logits = self.soft1(logits) # print(logits) # print(logits.shape) return clas,death,life
self.bert = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=num_labels) # 用预训练的中文Bert模型初始化self.bert, 输出维度为num_labels # print(self.bert.config.hidden_...
如何运行以下模块使其可以运行bert模型:model_name = args.model # bert x = import_module('models.' + model_name)
tokenizer = BertTokenizerFast.from_pretrained(model_name) # 初始化配置,假设BERTConfig是一个自定义的类,类似上面提到的BERTConfig config = BERTConfig() else: # 如果不是BERT,按照原有的方式导入...
'GPT2Classifier' object has no attribute 'config'
在上面的代码中,GPT2Config.from_pretrained('gpt2') 语句会从 Hugging Face 的模型库中加载 GPT2 模型的配置,并将其设置为 config 属性。现在你的 GPT2Classifier 类应该能够正常运行了。
给出详细的复杂的完整的上述代码
bert_config = BertConfig.from_pretrained('bert-base-uncased') # 创建RGA模块和Bert模型 rga_module = RGA(bert_config, n_heads=8) teacher_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') ...
如何修改上述代码,使其可以运行bert模块
class BERTConfig(x.Config): def __init__(self, dataset, **kwargs): super().__init__(**kwargs) self.vocab_size = tokenizer.vocab_size self.hidden_size = x.config.hidden_size # BERT的隐藏层大小 ......
huggingface如何修改模型架构
4. **保存和加载**: 完成修改后,记得使用save_pretrained()和from_pretrained()方法保存和加载模型,以便其他人也能使用你的修改。 python custom_model.save_pretrained("my_custom_bert") loaded_custom_...
该代码数据结构的初始化
self.transformer = GPT2Model.from_pretrained(config.model_name_or_path, config=config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # 2. 初始化词向量 self....
tkinter界面上nlp自动生成对联下联的代码
super().__init__(master) self.master = master self.pack() self.create_widgets() def create_widgets(self): self.prompt_label = tk.Label(self, text="请输入上联:") self.prompt_label.pack(side=...
MC-BERT表征文本的代码
config = BertConfig.from_pretrained('bert-base-uncased') model = MCBert(config) # 输入文本 text = "Hello, how are you doing today?" # 将文本转换为输入特征 input_ids = tokenizer.encode(text, add_...
自己写的语言模型、tokenizer怎么用transformers格式保存
如果你已经编写了自己的语言模型和tokenizer,想要以Hugging Face Transformers的格式保存,你需要做以下几个步骤: ... loaded_tokenizer = AutoTokenizer.from_pretrained('my_custom_tokenizer')
CSDN会员
开通CSDN年卡参与万元壕礼抽奖
海量
VIP免费资源
千本
正版电子书
商城
会员专享价
千门
课程&专栏
全年可省5,000元
立即开通
全年可省5,000元
立即开通
最新推荐
基于 C++构建 Qt 实现的 GDAL 与 PROJ4 的遥感图像处理软件课程设计
【作品名称】:基于 C++构建 Qt 实现的 GDAL 与 PROJ4 的遥感图像处理软件【课程设计】 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】: 用于处理包括*.img、*.tif、*.jpg、*.bmp、*.png等格式,不同位深的遥感图像。旨在提供简洁的用户界面与清晰的操作逻辑。软件囊括了基本的遥感图像处理功能,例如增强、边缘检测等,并提供了一种变化检测方法。 引用库 本软件基于 GDAL 与 Qt 在 C++ 环境下构建,地理信息处理部分使用了开源库 Proj.4 库,部分功能引用了 OpenCV 计算机视觉库 【资源声明】:本资源作为“参考资料”而不是“定制需求”,代码只能作为参考,不能完全复制照搬。需要有一定的基础看懂代码,自行调试代码并解决报错,能自行添加功能修改代码。
【java毕业设计】娜娜服装企业物流管理系统源码(完整前后端+说明文档+LW).zip
本系统包括普通员工、管理员两种角色,各个角色的具体功能如下: (1)普通员工具有的权限功能如下: ① 员工信息管理:对员工信息进行增删改查。 ② 服装信息管理:对服装公司的衣服信息进行增删改查。 ③ 库存信息管理:可以查看仓库的服装数量。 ④ 车辆信息管理:员工可以查询车辆信息:车牌号,编号,司机等。 ⑤ 服装配送管理:可以查看服装配送情况,车辆等。 (2)管理员具有的权限功能如下: ① 账号信息管理:对员工的账号进行管理。 ② 用户信息管理:当前企业的用户信息管理。 ③ 员工信息管理:对员工信息进行增删改查。 ④ 服装信息管理:对服装公司的衣服信息进行增删改查。 ⑤ 库存信息管理:可以查看仓库的服装数量。 ⑥ 车辆信息管理:员工可以查询车辆信息:车牌号,编号,司机等。 ⑦ 服装配送管理:可以查看服装配送情况,车辆等。 环境说明: 开发语言:Java,jsp JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea 部署容器:tomcat
2009年国际大学生数学建模竞赛成果公告
内容概要:报告了第25届数学建模大赛(MCM)的官方结果。此次比赛来自14个国家超过1600支队伍参赛,在规定的时间完成指定题目。本次大赛主要在线上进行,参与者可以在规定时间注册,下载所需资料以及问题。比赛设置了‘最佳设计奖’,有9支团队从不同院校脱颖而出被评为优秀获奖者,其中包括两所中国大学——清华大学和北京理工大学(北航大学)。 适用人群:数学、运筹学等相关领域的学者和学生 使用场景及目标:为从事相关研究工作的个人提供了重要的参考资料;帮助了解当前学术界在解决复杂实际问题方面的方法与趋势。 其他说明:竞赛旨在提升青年对于运用数学模型解决问题的兴趣和能力,促进了跨文化交流和技术水平的发展。
C语言数组操作:高度检查器编程实践
资源摘要信息: "C语言编程题之数组操作高度检查器" C语言是一种广泛使用的编程语言,它以其强大的功能和对低级操作的控制而闻名。数组是C语言中一种基本的数据结构,用于存储相同类型数据的集合。数组操作包括创建、初始化、访问和修改元素以及数组的其他高级操作,如排序、搜索和删除。本资源名为“c语言编程题之数组操作高度检查器.zip”,它很可能是一个围绕数组操作的编程实践,具体而言是设计一个程序来检查数组中元素的高度。在这个上下文中,“高度”可能是对数组中元素值的一个比喻,或者特定于某个应用场景下的一个术语。 知识点1:C语言基础 C语言编程题之数组操作高度检查器涉及到了C语言的基础知识点。它要求学习者对C语言的数据类型、变量声明、表达式、控制结构(如if、else、switch、循环控制等)有清晰的理解。此外,还需要掌握C语言的标准库函数使用,这些函数是处理数组和其他数据结构不可或缺的部分。 知识点2:数组的基本概念 数组是C语言中用于存储多个相同类型数据的结构。它提供了通过索引来访问和修改各个元素的方式。数组的大小在声明时固定,之后不可更改。理解数组的这些基本特性对于编写有效的数组操作程序至关重要。 知识点3:数组的创建与初始化 在C语言中,创建数组时需要指定数组的类型和大小。例如,创建一个整型数组可以使用int arr[10];语句。数组初始化可以在声明时进行,也可以在之后使用循环或单独的赋值语句进行。初始化对于定义检查器程序的初始状态非常重要。 知识点4:数组元素的访问与修改 通过使用数组索引(下标),可以访问数组中特定位置的元素。在C语言中,数组索引从0开始。修改数组元素则涉及到了将新值赋给特定索引位置的操作。在编写数组操作程序时,需要频繁地使用这些操作来实现功能。 知识点5:数组高级操作 除了基本的访问和修改之外,数组的高级操作包括排序、搜索和删除。这些操作在很多实际应用中都有广泛用途。例如,检查器程序可能需要对数组中的元素进行排序,以便于进行高度检查。搜索功能用于查找特定值的元素,而删除操作则用于移除数组中的元素。 知识点6:编程实践与问题解决 标题中提到的“高度检查器”暗示了一个具体的应用场景,可能涉及到对数组中元素的某种度量或标准进行判断。编写这样的程序不仅需要对数组操作有深入的理解,还需要将这些操作应用于解决实际问题。这要求编程者具备良好的逻辑思维能力和问题分析能力。 总结:本资源"c语言编程题之数组操作高度检查器.zip"是一个关于C语言数组操作的实际应用示例,它结合了编程实践和问题解决的综合知识点。通过实现一个针对数组元素“高度”检查的程序,学习者可以加深对数组基础、数组操作以及C语言编程技巧的理解。这种类型的编程题目对于提高编程能力和逻辑思维能力都有显著的帮助。
管理建模和仿真的文件
管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧
![【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧](https://giecdn.blob.core.windows.net/fileuploads/image/2022/11/17/kuka-visual-robot-guide.jpg) 参考资源链接:[KUKA机器人系统变量手册(KSS 8.6 中文版):深入解析与应用](https://wenku.csdn.net/doc/p36po06uv7?spm=1055.2635.3001.10343) # 1. KUKA系统变量的理论基础 ## 理解系统变量的基本概念 KUKA系统变量是机器人控制系统中的一个核心概念,它允许
如何使用Python编程语言创建一个具有动态爱心图案作为背景并添加文字'天天开心(高级版)'的图形界面?
要在Python中创建一个带动态爱心图案和文字的图形界面,可以结合使用Tkinter库(用于窗口和基本GUI元素)以及PIL(Python Imaging Library)处理图像。这里是一个简化的例子,假设你已经安装了这两个库: 首先,安装必要的库: ```bash pip install tk pip install pillow ``` 然后,你可以尝试这个高级版的Python代码: ```python import tkinter as tk from PIL import Image, ImageTk def draw_heart(canvas): heart = I
基于Swift开发的嘉定单车LBS iOS应用项目解析
资源摘要信息:"嘉定单车汇(IOS app).zip" 从标题和描述中,我们可以得知这个压缩包文件包含的是一套基于iOS平台的移动应用程序的开发成果。这个应用是由一群来自同济大学软件工程专业的学生完成的,其核心功能是利用位置服务(LBS)技术,面向iOS用户开发的单车共享服务应用。接下来将详细介绍所涉及的关键知识点。 首先,提到的iOS平台意味着应用是为苹果公司的移动设备如iPhone、iPad等设计和开发的。iOS是苹果公司专有的操作系统,与之相对应的是Android系统,另一个主要的移动操作系统平台。iOS应用通常是用Swift语言或Objective-C(OC)编写的,这在标签中也得到了印证。 Swift是苹果公司在2014年推出的一种新的编程语言,用于开发iOS和macOS应用程序。Swift的设计目标是与Objective-C并存,并最终取代后者。Swift语言拥有现代编程语言的特性,包括类型安全、内存安全、简化的语法和强大的表达能力。因此,如果一个项目是使用Swift开发的,那么它应该会利用到这些特性。 Objective-C是苹果公司早前主要的编程语言,用于开发iOS和macOS应用程序。尽管Swift现在是主要的开发语言,但仍然有许多现存项目和开发者在使用Objective-C。Objective-C语言集成了C语言与Smalltalk风格的消息传递机制,因此它通常被认为是一种面向对象的编程语言。 LBS(Location-Based Services,位置服务)是基于位置信息的服务。LBS可以用来为用户提供地理定位相关的信息服务,例如导航、社交网络签到、交通信息、天气预报等。本项目中的LBS功能可能包括定位用户位置、查找附近的单车、计算骑行路线等功能。 从文件名称列表来看,包含的三个文件分别是: 1. ios期末项目文档.docx:这份文档可能是对整个iOS项目的设计思路、开发过程、实现的功能以及遇到的问题和解决方案等进行的详细描述。对于理解项目的背景、目标和实施细节至关重要。 2. 移动应用开发项目期末答辩.pptx:这份PPT文件应该是为项目答辩准备的演示文稿,里面可能包括项目的概览、核心功能演示、项目亮点以及团队成员介绍等。这可以作为了解项目的一个快速入门方式,尤其是对项目的核心价值和技术难点有直观的认识。 3. LBS-ofo期末项目源码.zip:这是项目的源代码压缩包,包含了完成单车汇项目所需的全部Swift或Objective-C代码。源码对于理解项目背后的逻辑和实现细节至关重要,同时也是评估项目质量、学习最佳实践、复用或扩展功能的基础。 综合上述信息,"嘉定单车汇(IOS app).zip"不仅仅是一个应用程序的压缩包,它还代表了一个团队在软件工程项目中的完整工作流程,包含了项目文档、演示材料和实际编码,为学习和评估提供了一个很好的案例。
"互动学习:行动中的多样性与论文攻读经历"
多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
PROTEUS符号定制指南:个性化元件创建与修改的全面攻略
![PROTEUS符号定制指南:个性化元件创建与修改的全面攻略](https://circuits-diy.com/wp-content/uploads/2020/05/74LS00-pinout.png) 参考资源链接:[Proteus电子元件符号大全:从二极管到场效应管](https://wenku.csdn.net/doc/1fahxsg8um?spm=1055.2635.3001.10343) # 1. PROTEUS符号定制基础知识 PROTEUS符号定制是电子工程设计中不可或缺的一环,它允许设计者创建和修改电路元件符号,以符合特定的设计需求。本章将为你提供关于PROTEUS符号