Traceback (most recent call last): File "D:\python1\model_training.py", line 8, in <module> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y) # 数据拆分 File "D:\python1\venv\lib\site-packages\sklearn\model_selection\_split.py", line 2562, in train_test_split n_train, n_test = _validate_shuffle_split( File "D:\python1\venv\lib\site-packages\sklearn\model_selection\_split.py", line 2236, in _validate_shuffle_split raise ValueError( ValueError: With n_samples=0, test_size=0.2 and train_size=None, the resulting train set will be empty. Adjust any of the aforementioned parameters.

时间: 2023-11-28 18:45:51 浏览: 336
这个错误是因为您的数据的样本数量太少,无法进行正确的数据拆分。在您的代码中,您正在尝试使用 `train_test_split` 函数来将数据拆分成训练集和测试集,但是由于您的数据样本数量为0,无法进行正确的数据拆分。 请检查您的数据是否正确加载,并确保您的数据至少包含一些样本,以便进行正确的数据拆分。您还可以尝试调整您的测试集大小或训练集大小,以确保您的数据可以正确拆分。
相关问题

Traceback (most recent call last): File "D:\人工智能\model_training.py", line 1, in <module> from data_process import get_data File "D:\人工智能\data_process.py", line 1, in <module> import cv2 ModuleNotFoundError: No module named 'cv2'

这个错误提示说明你在Python脚本中导入了一个名为cv2的模块,但是Python解释器找不到这个模块。这可能是因为你没有安装OpenCV库,或者你安装的OpenCV库版本不兼容。你可以尝试通过以下命令来安装OpenCV库: ``` pip install opencv-python ``` 如果你已经安装了OpenCV库,但是仍然遇到这个问题,你可以尝试升级OpenCV库版本: ``` pip install opencv-python --upgrade ``` 如果还是无法解决问题,你可以考虑检查Python环境变量是否正确设置,或者检查代码中是否有其他错误。

Traceback (most recent call last): File "e:\aboutcode\py_code\ML_knn_final.py", line 251, in <module> for train_data, verify_data in skf.split(trainingData): TypeError: StratifiedKFold.split() missing 1 required positional argument: 'y'

这个错误提示是因为 `StratifiedKFold.split()` 方法需要传入两个参数:`X` 和 `y`,其中 `X` 是特征数据,`y` 是标签数据。你需要检查一下在使用 `skf.split(trainingData)` 时是否同时传入了特征数据和标签数据。你可以将数据集 `trainingData` 拆分成特征数据和标签数据,然后将它们分别传入 `skf.split()` 方法中。示例代码如下: ```python import numpy as np from sklearn.model_selection import StratifiedKFold # 假设 trainingData 包含特征数据和标签数据 X = trainingData[:, :-1] # 特征数据 y = trainingData[:, -1] # 标签数据 # 创建 StratifiedKFold 对象 skf = StratifiedKFold(n_splits=5) # 使用 StratifiedKFold 进行交叉验证 for train_idx, verify_idx in skf.split(X, y): train_data, verify_data = X[train_idx], X[verify_idx] train_label, verify_label = y[train_idx], y[verify_idx] # 在这里进行模型训练和验证 ``` 在这个示例中,我们将数据集 `trainingData` 拆分成了特征数据 `X` 和标签数据 `y`,然后将它们传入了 `skf.split(X, y)` 方法中。在循环中,我们根据索引从 `X` 和 `y` 中取出训练和验证数据,并进行模型训练和验证。
阅读全文

相关推荐

create LoRA network. base dim (rank): 64, alpha: 32 neuron dropout: p=None, rank dropout: p=None, module dropout: p=None create LoRA for Text Encoder: 72 modules. create LoRA for U-Net: 192 modules. enable LoRA for text encoder enable LoRA for U-Net Traceback (most recent call last): File "D:\lora_lian\sd-scripts\train_network.py", line 873, in <module> train(args) File "D:\lora_lian\sd-scripts\train_network.py", line 242, in train info = network.load_weights(args.network_weights) File "D:\lora_lian\sd-scripts\networks\lora.py", line 884, in load_weights info = self.load_state_dict(weights_sd, False) File "D:\lora_lian\python\lib\site-packages\torch\nn\modules\module.py", line 2041, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for LoRANetwork: size mismatch for lora_unet_mid_block_attentions_0_proj_out.lora_up.weight: copying a param with shape torch.Size([1280, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([1280, 64, 1, 1]). Traceback (most recent call last): File "D:\lora_lian\python\lib\runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "D:\lora_lian\python\lib\runpy.py", line 86, in _run_code exec(code, run_globals) File "D:\lora_lian\python\lib\site-packages\accelerate\commands\launch.py", line 1114, in <module> main() File "D:\lora_lian\python\lib\site-packages\accelerate\commands\launch.py", line 1110, in main launch_command(args) File "D:\lora_lian\python\lib\site-packages\accelerate\commands\launch.py", line 1104, in launch_command simple_launcher(args) File "D:\lora_lian\python\lib\site-packages\accelerate\commands\launch.py", line 567, in simple_launcher raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd) subprocess.CalledProcessError: Command '['D:\\lora_lian\\python\\python.exe', './sd-scripts/train_network.py', '--config_file', 'D:\\lora_lian\\toml\\autosave\\20230709-112914.toml']' returned non-zero exit status 1. Training failed / 训练失败

Epoch 1/10 2023-07-22 21:56:00.836220: W tensorflow/core/framework/op_kernel.cc:1807] OP_REQUIRES failed at cast_op.cc:121 : UNIMPLEMENTED: Cast string to int64 is not supported Traceback (most recent call last): File "d:\AI\1.py", line 37, in <module> model.fit(images, labels, epochs=10, validation_split=0.2) File "D:\AI\env\lib\site-packages\keras\utils\traceback_utils.py", line 70, in error_handler raise e.with_traceback(filtered_tb) from None File "D:\AI\env\lib\site-packages\tensorflow\python\eager\execute.py", line 52, in quick_execute tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, tensorflow.python.framework.errors_impl.UnimplementedError: Graph execution error: Detected at node 'sparse_categorical_crossentropy/Cast' defined at (most recent call last): File "d:\AI\1.py", line 37, in <module> model.fit(images, labels, epochs=10, validation_split=0.2) File "D:\AI\env\lib\site-packages\keras\utils\traceback_utils.py", line 65, in error_handler return fn(*args, **kwargs) File "D:\AI\env\lib\site-packages\keras\engine\training.py", line 1685, in fit tmp_logs = self.train_function(iterator) File "D:\AI\env\lib\site-packages\keras\engine\training.py", line 1284, in train_function return step_function(self, iterator) File "D:\AI\env\lib\site-packages\keras\engine\training.py", line 1268, in step_function outputs = model.distribute_strategy.run(run_step, args=(data,)) File "D:\AI\env\lib\site-packages\keras\engine\training.py", line 1249, in run_step outputs = model.train_step(data) File "D:\AI\env\lib\site-packages\keras\engine\training.py", line 1051, in train_step loss = self.compute_loss(x, y, y_pred, sample_weight) File "D:\AI\env\lib\site-packages\keras\engine\training.py", line 1109, in compute_loss return self.compiled_loss( File "D:\AI\env\lib\site-packages\keras\engine\compile_utils.py", line 265, in __call__ loss_value = loss_obj(y_t, y_p, sample_weight=sw) File "D:\AI\env\lib\site-packages\keras\losses.py", line 142, in __call__ losses = call_fn(y_true, y_pred) File "D:\AI\env\lib\site-packages\keras\losses.py", line 268, in call return ag_fn(y_true, y_pred, **self._fn_kwargs) File "D:\AI\env\lib\site-packages\keras\losses.py", line 2078, in sparse_categorical_crossentropy return backend.sparse_categorical_crossentropy( File "D:\AI\env\lib\site-packages\keras\backend.py", line 5610, in sparse_categorical_crossentropy target = cast(target, "int64") File "D:\AI\env\lib\site-packages\keras\backend.py", line 2304, in cast return tf.cast(x, dtype) Node: 'sparse_categorical_crossentropy/Cast' Cast string to int64 is not supported [[{{node sparse_categorical_crossentropy/Cast}}]] [Op:__inference_train_function_1010]

Traceback (most recent call last): File "D:\tensorflow2-book\data\cat-dog\diaoqu.py", line 41, in <module> pre=model.predict(nim) ^^^^^^^^^^^^^^^^^^ File "C:\Users\17732\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\utils\traceback_utils.py", line 70, in error_handler raise e.with_traceback(filtered_tb) from None File "C:\Users\17732\AppData\Local\Temp\__autograph_generated_filevg4phta4.py", line 15, in tf__predict_function retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope) ^^^^^ ValueError: in user code: File "C:\Users\17732\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\engine\training.py", line 2169, in predict_function * return step_function(self, iterator) File "C:\Users\17732\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\engine\training.py", line 2155, in step_function ** outputs = model.distribute_strategy.run(run_step, args=(data,)) File "C:\Users\17732\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\engine\training.py", line 2143, in run_step ** outputs = model.predict_step(data) File "C:\Users\17732\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\engine\training.py", line 2111, in predict_step return self(x, training=False) File "C:\Users\17732\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\utils\traceback_utils.py", line 70, in error_handler raise e.with_traceback(filtered_tb) from None File "C:\Users\17732\AppData\Local\Programs\Python\Python311\Lib\site-packages\keras\engine\input_spec.py", line 298, in assert_input_compatibility raise ValueError( ValueError: Input 0 of layer "sequential" is incompatible with the layer: expected shape=(None, 128, 128, 3), found shape=(32, 128, 3)

Traceback (most recent call last): File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\run.py", line 37, in <module> train_ner() File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\run.py", line 33, in train_ner train(args=args) File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\bert_base\train\bert_lstm_ner.py", line 626, in train tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\venv\lib\site-packages\tensorflow_estimator\python\estimator\training.py", line 473, in train_and_evaluate return executor.run() File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\venv\lib\site-packages\tensorflow_estimator\python\estimator\training.py", line 613, in run return self.run_local() File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\venv\lib\site-packages\tensorflow_estimator\python\estimator\training.py", line 714, in run_local saving_listeners=saving_listeners) File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\venv\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 370, in train loss = self._train_model(input_fn, hooks, saving_listeners) File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\venv\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 1161, in _train_model return self._train_model_default(input_fn, hooks, saving_listeners) File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\venv\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 1191, in _train_model_default features, labels, ModeKeys.TRAIN, self.config) File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\venv\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py", line 1149, in _call_model_fn model_fn_results = self._model_fn(features=features, **kwargs) File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\bert_base\train\bert_lstm_ner.py", line 405, in model_fn total_loss, learning_rate, num_train_steps, num_warmup_steps, False) File "E:\pycharm-workspace\BERT\BERT-BiLSTM-CRF-NER-master\bert_base\bert\optimization.py", line 65, in create_optimizer exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"]) TypeError: Can't instantiate abstract class AdamWeightDecayOptimizer with abstract methods get_config 进程已结束,退出代码1

C:\Users\adminstor\anaconda3\envs\python39\python.exe D:\daima\KalmanNet_TSP-main\main_lor_DT_NLobs.py Pipeline Start Current Time = 07.24.23_12:19:44 Using GPU 1/r2 [dB]: tensor(30.) 1/q2 [dB]: tensor(30.) Start Data Gen Data Load data_lor_v0_rq3030_T20.pt no chopping trainset size: torch.Size([1000, 3, 20]) cvset size: torch.Size([100, 3, 20]) testset size: torch.Size([200, 3, 20]) Evaluate EKF full Extended Kalman Filter - MSE LOSS: tensor(-26.4659) [dB] Extended Kalman Filter - STD: tensor(1.6740) [dB] Inference Time: 37.115127086639404 KalmanNet start Number of trainable parameters for KNet: 19938 Composition Loss: True Traceback (most recent call last): File "D:\daima\KalmanNet_TSP-main\main_lor_DT_NLobs.py", line 146, in <module> [MSE_cv_linear_epoch, MSE_cv_dB_epoch, MSE_train_linear_epoch, MSE_train_dB_epoch] = KalmanNet_Pipeline.NNTrain(sys_model, cv_input, cv_target, train_input, train_target, path_results) File "D:\daima\KalmanNet_TSP-main\Pipelines\Pipeline_EKF.py", line 150, in NNTrain MSE_trainbatch_linear_LOSS = self.alpha * self.loss_fn(x_out_training_batch, train_target_batch)+(1-self.alpha)*self.loss_fn(y_hat, y_training_batch) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\modules\module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\modules\loss.py", line 520, in forward return F.mse_loss(input, target, reduction=self.reduction) File "C:\Users\adminstor\anaconda3\envs\python39\lib\site-packages\torch\nn\functional.py", line 3112, in mse_loss return torch._C._nn.mse_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction)) RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!

最新推荐

recommend-type

ta-lib-0.5.1-cp312-cp312-win32.whl

ta_lib-0.5.1-cp312-cp312-win32.whl
recommend-type

在线实时的斗兽棋游戏,时间赶,粗暴的使用jQuery + websoket 实现实时H5对战游戏 + java.zip课程设计

课程设计 在线实时的斗兽棋游戏,时间赶,粗暴的使用jQuery + websoket 实现实时H5对战游戏 + java.zip课程设计
recommend-type

ta-lib-0.5.1-cp310-cp310-win-amd64.whl

ta_lib-0.5.1-cp310-cp310-win_amd64.whl
recommend-type

基于springboot+vue物流系统源码数据库文档.zip

基于springboot+vue物流系统源码数据库文档.zip
recommend-type

ERA5_Climate_Moisture_Index.txt

GEE训练教程——Landsat5、8和Sentinel-2、DEM和各2哦想指数下载
recommend-type

全国江河水系图层shp文件包下载

资源摘要信息:"国内各个江河水系图层shp文件.zip" 地理信息系统(GIS)是管理和分析地球表面与空间和地理分布相关的数据的一门技术。GIS通过整合、存储、编辑、分析、共享和显示地理信息来支持决策过程。在GIS中,矢量数据是一种常见的数据格式,它可以精确表示现实世界中的各种空间特征,包括点、线和多边形。这些空间特征可以用来表示河流、道路、建筑物等地理对象。 本压缩包中包含了国内各个江河水系图层的数据文件,这些图层是以shapefile(shp)格式存在的,是一种广泛使用的GIS矢量数据格式。shapefile格式由多个文件组成,包括主文件(.shp)、索引文件(.shx)、属性表文件(.dbf)等。每个文件都存储着不同的信息,例如.shp文件存储着地理要素的形状和位置,.dbf文件存储着与这些要素相关的属性信息。本压缩包内还包含了图层文件(.lyr),这是一个特殊的文件格式,它用于保存图层的样式和属性设置,便于在GIS软件中快速重用和配置图层。 文件名称列表中出现的.dbf文件包括五级河流.dbf、湖泊.dbf、四级河流.dbf、双线河.dbf、三级河流.dbf、一级河流.dbf、二级河流.dbf。这些文件中包含了各个水系的属性信息,如河流名称、长度、流域面积、流量等。这些数据对于水文研究、环境监测、城市规划和灾害管理等领域具有重要的应用价值。 而.lyr文件则包括四级河流.lyr、五级河流.lyr、三级河流.lyr,这些文件定义了对应的河流图层如何在GIS软件中显示,包括颜色、线型、符号等视觉样式。这使得用户可以直观地看到河流的层级和特征,有助于快速识别和分析不同的河流。 值得注意的是,河流按照流量、流域面积或长度等特征,可以被划分为不同的等级,如一级河流、二级河流、三级河流、四级河流以及五级河流。这些等级的划分依据了水文学和地理学的标准,反映了河流的规模和重要性。一级河流通常指的是流域面积广、流量大的主要河流;而五级河流则是较小的支流。在GIS数据中区分河流等级有助于进行水资源管理和防洪规划。 总而言之,这个压缩包提供的.shp文件为我们分析和可视化国内的江河水系提供了宝贵的地理信息资源。通过这些数据,研究人员和规划者可以更好地理解水资源分布,为保护水资源、制定防洪措施、优化水资源配置等工作提供科学依据。同时,这些数据还可以用于教育、科研和公共信息服务等领域,以帮助公众更好地了解我国的自然地理环境。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keras模型压缩与优化:减小模型尺寸与提升推理速度

![Keras模型压缩与优化:减小模型尺寸与提升推理速度](https://dvl.in.tum.de/img/lectures/automl.png) # 1. Keras模型压缩与优化概览 随着深度学习技术的飞速发展,模型的规模和复杂度日益增加,这给部署带来了挑战。模型压缩和优化技术应运而生,旨在减少模型大小和计算资源消耗,同时保持或提高性能。Keras作为流行的高级神经网络API,因其易用性和灵活性,在模型优化领域中占据了重要位置。本章将概述Keras在模型压缩与优化方面的应用,为后续章节深入探讨相关技术奠定基础。 # 2. 理论基础与模型压缩技术 ### 2.1 神经网络模型压缩
recommend-type

MTK 6229 BB芯片在手机中有哪些核心功能,OTG支持、Wi-Fi支持和RTC晶振是如何实现的?

MTK 6229 BB芯片作为MTK手机的核心处理器,其核心功能包括提供高速的数据处理、支持EDGE网络以及集成多个通信接口。它集成了DSP单元,能够处理高速的数据传输和复杂的信号处理任务,满足手机的多媒体功能需求。 参考资源链接:[MTK手机外围电路详解:BB芯片、功能特性和干扰滤波](https://wenku.csdn.net/doc/64af8b158799832548eeae7c?spm=1055.2569.3001.10343) OTG(On-The-Go)支持是通过芯片内部集成功能实现的,允许MTK手机作为USB Host与各种USB设备直接连接,例如,连接相机、键盘、鼠标等
recommend-type

点云二值化测试数据集的详细解读

资源摘要信息:"点云二值化测试数据" 知识点: 一、点云基础知识 1. 点云定义:点云是由点的集合构成的数据集,这些点表示物体表面的空间位置信息,通常由三维扫描仪或激光雷达(LiDAR)生成。 2. 点云特性:点云数据通常具有稠密性和不规则性,每个点可能包含三维坐标(x, y, z)和额外信息如颜色、反射率等。 3. 点云应用:广泛应用于计算机视觉、自动驾驶、机器人导航、三维重建、虚拟现实等领域。 二、二值化处理概述 1. 二值化定义:二值化处理是将图像或点云数据中的像素或点的灰度值转换为0或1的过程,即黑白两色表示。在点云数据中,二值化通常指将点云的密度或强度信息转换为二元形式。 2. 二值化的目的:简化数据处理,便于后续的图像分析、特征提取、分割等操作。 3. 二值化方法:点云的二值化可能基于局部密度、强度、距离或其他用户定义的标准。 三、点云二值化技术 1. 密度阈值方法:通过设定一个密度阈值,将高于该阈值的点分类为前景,低于阈值的点归为背景。 2. 距离阈值方法:根据点到某一参考点或点云中心的距离来决定点的二值化,距离小于某个值的点为前景,大于的为背景。 3. 混合方法:结合密度、距离或其他特征,通过更复杂的算法来确定点的二值化。 四、二值化测试数据的处理流程 1. 数据收集:使用相应的设备和技术收集点云数据。 2. 数据预处理:包括去噪、归一化、数据对齐等步骤,为二值化处理做准备。 3. 二值化:应用上述方法,对预处理后的点云数据执行二值化操作。 4. 测试与验证:采用适当的评估标准和测试集来验证二值化效果的准确性和可靠性。 5. 结果分析:通过比较二值化前后点云数据的差异,分析二值化效果是否达到预期目标。 五、测试数据集的结构与组成 1. 测试数据集格式:文件可能以常见的点云格式存储,如PLY、PCD、TXT等。 2. 数据集内容:包含了用于测试二值化算法性能的点云样本。 3. 数据集数量和多样性:根据实际应用场景,测试数据集应该包含不同类型、不同场景下的点云数据。 六、相关软件工具和技术 1. 点云处理软件:如CloudCompare、PCL(Point Cloud Library)、MATLAB等。 2. 二值化算法实现:可能涉及图像处理库或专门的点云处理算法。 3. 评估指标:用于衡量二值化效果的指标,例如分类的准确性、召回率、F1分数等。 七、应用场景分析 1. 自动驾驶:在自动驾驶领域,点云二值化可用于道路障碍物检测和分割。 2. 三维重建:在三维建模中,二值化有助于提取物体表面并简化模型复杂度。 3. 工业检测:在工业检测中,二值化可以用来识别产品缺陷或确保产品质量标准。 综上所述,点云二值化测试数据的处理是一个涉及数据收集、预处理、二值化算法应用、效果评估等多个环节的复杂过程,对于提升点云数据处理的自动化、智能化水平至关重要。