def get_subsample(dataSet, ratio): subdataSet = [] lenSubdata = round(len(dataSet) * ratio)#返回浮点数 while len(subdataSet) < lenSubdata: index = randrange(len(dataSet) - 1)

时间: 2023-05-22 16:00:52 浏览: 67
这是一个Python函数,名为get_subsample,它有两个参数:dataSet和ratio。它的作用是从数据集中随机抽取一部分数据,抽取的比例由ratio参数指定。抽取的数据存储在subdataSet列表中,列表的长度由lenSubdata变量指定,它是数据集长度乘以ratio后四舍五入的结果。
相关问题

def get_subsample(dataSet, ratio): subdataSet = [] lenSubdata = round(len(dataSet) * ratio)

这是一个函数,用于从数据集中随机抽取一定比例的数据。其中,dataSet是原始数据集,ratio是抽取比例。函数的返回值是抽取后的子数据集subdataSet。lenSubdata是子数据集的长度,通过round函数将原始数据集长度乘以抽取比例得到。

def get_CIFAR10_data(num_training=5000, num_validation=500, num_test=500): # Load the raw CIFAR-10 data cifar10_dir = r'D:\daima\cifar-10-python\cifar-10-batches-py' X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) print(X_train.shape) # Subsample the data mask = range(num_training, num_training + num_validation) X_val = X_train[mask] y_val = y_train[mask] mask = range(num_training) X_train = X_train[mask] y_train = y_train[mask] mask = range(num_test) X_test = X_test[mask] y_test = y_test[mask] # 标准化数据,求样本均值,然后 样本 - 样本均值,作用:使样本数据更收敛一些,便于后续处理 # Normalize the data: subtract the mean image # 如果2维空间 m*n np.mean()后 => 1*n # 对于4维空间 m*n*k*j np.mean()后 => 1*n*k*j mean_image = np.mean(X_train, axis=0) X_train -= mean_image X_val -= mean_image X_test -= mean_image # 把通道channel 提前 # Transpose so that channels come first X_train = X_train.transpose(0, 3, 1, 2).copy() X_val = X_val.transpose(0, 3, 1, 2).copy() X_test = X_test.transpose(0, 3, 1, 2).copy() # Package data into a dictionary return { 'X_train': X_train, 'y_train': y_train, 'X_val': X_val, 'y_val': y_val, 'X_test': X_test, 'y_test': y_test, }

这是一个加载 CIFAR-10 数据集并进行预处理的函数。其中,num_training、num_validation 和 num_test 分别表示训练集、验证集和测试集的样本数。函数首先通过 load_CIFAR10 函数加载原始的 CIFAR-10 数据集,然后进行数据的子采样。接着,对数据进行标准化,即减去样本均值,使得数据更容易处理。最后,将数据转换为通道在前的形式,并将其打包到一个字典中返回。

相关推荐

根据以下代码,利用shap库写出绘制bar plot图的代码“def five_fold_train(x: pd.DataFrame, y: pd.DataFrame, model_class: type, super_parameters: dict = None, return_model=False): """ 5折交叉验证训练器 :param x: :param y: :param model_class: 学习方法类别,传入一个类型 :param super_parameters: 超参数 :param return_model: 是否返回每个模型 :return: list of [pred_y,val_y,auc,precision,recall] """ res = [] models = [] k_fold = KFold(5, random_state=456, shuffle=True) for train_index, val_index in k_fold.split(x, y): #即对数据进行位置索引,从而在数据表中提取出相应的数据 train_x, train_y, val_x, val_y = x.iloc[train_index], y.iloc[train_index], x.iloc[val_index], y.iloc[val_index] if super_parameters is None: super_parameters = {} model = model_class(**super_parameters).fit(train_x, train_y) pred_y = model.predict(val_x) auc = metrics.roc_auc_score(val_y, pred_y) precision = metrics.precision_score(val_y, (pred_y > 0.5) * 1) recall = metrics.recall_score(val_y, (pred_y > 0.5) * 1) res.append([pred_y, val_y, auc, precision, recall]) models.append(model) # print(f"fold: auc{auc} precision{precision} recall{recall}") if return_model: return res, models else: return res best_params = { "n_estimators": 500, "learning_rate": 0.05, "max_depth": 6, "colsample_bytree": 0.6, "min_child_weight": 1, "gamma": 0.7, "subsample": 0.6, "random_state": 456 } res, models = five_fold_train(x, y, XGBRegressor, super_parameters=best_params, return_model=True)”

def xgb_cv(max_depth, learning_rate, n_estimators, gamma, min_child_weight, subsample, colsample_bytree): date_x = pd.read_csv('Train_data1.csv') # Well logging data date_x.rename(columns={"TC": 'label'}, inplace=True) date_x.drop('Depth', axis=1, inplace=True) date_x.drop('MSFL', axis=1, inplace=True) date_x.drop('CNL', axis=1, inplace=True) date_x.drop('AC', axis=1, inplace=True) date_x.drop('GR', axis=1, inplace=True) data = date_x.iloc[2:42, :] label = data.iloc[:, 1:2] data2 = data.iloc[:, :7] train_x, test_x, train_y, test_y = train_test_split(data2, label, test_size=0.5, random_state=0) xgb_train = xgb.DMatrix(train_x, label=train_y) xgb_test = xgb.DMatrix(test_x, label=test_y) params = { 'eval_metric': 'rmse', 'max_depth': int(max_depth), 'learning_rate': learning_rate, 'n_estimators': int(n_estimators), 'gamma': gamma, 'min_child_weight': int(min_child_weight), 'subsample': subsample, 'colsample_bytree': colsample_bytree, 'n_jobs': -1, 'random_state': 42 } # 进行交叉验证 cv_result = xgb.cv(params, xgb_train, num_boost_round=100, early_stopping_rounds=10, stratified=False) return -1.0 * cv_result['test-rmse-mean'].iloc[-1] # 定义参数范围 pbounds = {'max_depth': (3, 10), 'learning_rate': (0.01, 0.3), 'n_estimators': (50, 200), 'gamma': (0, 10), 'min_child_weight': (1, 10), 'subsample': (0.5, 1), 'colsample_bytree': (0.1, 1)} # 进行贝叶斯优化,找到最优超参数 optimizer = BayesianOptimization(f=xgb_cv, pbounds=pbounds, random_state=42) optimizer.maximize(init_points=5, n_iter=25) # 输出最优结果 print(optimizer.max) model = xgb.train(optimizer.max, xgb_train) model.save_model("model3.xgb") return optimizer.max

以下代码是哪出现了问题呢?为什么运行报错“subsample”:from sklearn.model_selection import cross_val_score from hyperopt import hp, fmin, tpe, Trials from xgboost import XGBRegressor as XGBR data = pd.read_csv(r"E:\exercise\synthesis\synthesis_dummy_2.csv") #验证随机森林填补缺失值方法是否有效 X = data.iloc[:,1:] y = data.iloc[:,0] # 定义超参数空间min_child_weight在0~40;num_boost_round的范围可以定到range(1,100,2);gamma在[20,100];lambda范围[1,2]; space = { 'max_depth': hp.choice('max_depth', range(1, 30)), 'n_estimators':hp.quniform("n_estimators",1,100), 'learning_rate':hp.uniform('subsample', 0.1, 1), 'min_child_weight': hp.choice('min_child_weight', range(1, 40)), 'gamma': hp.uniform('gamma', 1, 100), 'subsample': hp.uniform('subsample', 0.1, 1), 'colsample_bytree': hp.uniform('colsample_bytree', 0.1, 1) } # 定义目标函数 def hyperopt_objective(params): reg = XGBR(random_state=100, **params) scores = cross_val_score(reg, Xtrain, Ytrain, cv=5) # 五倍交叉验证 return 1 - scores.mean() # 返回平均交叉验证误差的相反数,即最小化误差 # 创建Trials对象以记录调参过程 trials = Trials() # 使用贝叶斯调参找到最优参数组合 best = fmin(hyperopt_objective, space, algo=tpe.suggest, max_evals=100, trials=trials) # 输出最优参数组合 print("Best parameters:", best) # 在最优参数组合下训练模型 best_params = space_eval(space, best) reg = XGBR(random_state=100, **best_params) reg.fit(Xtrain, Ytrain) # 在验证集上评估模型 y_pred = reg.predict(X_val) evaluation = evaluate_model(y_val, y_pred) # 自定义评估函数 print("Model evaluation:", evaluation)

最新推荐

recommend-type

合信TP-i系列HMI触摸屏CAD图.zip

合信TP-i系列HMI触摸屏CAD图
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到
recommend-type

BSC关键绩效指标详解:财务与运营效率评估

BSC(Balanced Scorecard,平衡计分卡)是一种企业绩效管理系统,它将公司的战略目标分解为四个维度:财务、客户、内部流程和学习与成长。在这个文档中,我们看到的是针对特定行业(可能是保险或保险经纪)的BSC绩效考核指标汇总,专注于财务类和非财务类的关键绩效指标(KPIs)。 财务类指标: 1. 部门费用预算达成率:衡量实际支出与计划费用之间的对比,通过公式 (实际部门费用/计划费用)*100% 来计算,数据来源于部门的预算和实际支出记录。 2. 项目研究开发费用预算达成率:同样用于评估研发项目的资金管理,公式为 (实际项目研究开发费用/计划费用)*100%。 3. 课题费用预算达成率、招聘费用预算达成率、培训费用预算达成率 和 新产品研究开发费用预算达成率:这些都是人力资源相关开支的预算执行情况,涉及到费用的实际花费与计划金额的比例。 4. 承保利润:衡量保险公司盈利能力的重要指标,包括赔付率和寿险各险种的死差损益(实际死亡率与预期死亡率的差异)。 5. 赔付率:反映保险公司的赔付情况,是业务健康度的一个关键指标。 6. 内嵌价值的增加:代表了保单的价值增长,反映了公司长期盈利能力。 7. 人力成本总额控制率:通过比较实际人力成本与计划成本来评估人力成本的有效管理。 8. 标准保费达成率:衡量公司的销售业绩,即实际收取保费与目标保费的比率。 9. 其他费用比率,如附加佣金、续期推动费用、业务推动费用等,用来评估营销费用的效率。 非财务类指标: 1. 销售目标达成率:衡量销售团队完成预定目标的程度,通过实际销售额与计划销售额的比率计算。 2. 理赔率:体现客户服务质量和效率,涉及保险公司处理理赔请求的速度和成功率。 3. 产品/服务销售收入达成率:衡量产品或服务的实际销售效果,反映市场响应和客户满意度。 这些指标集合在一起,提供了全面的视角来评估公司的经营效率、财务表现以及战略执行情况。通过定期跟踪和分析这些数据,企业可以持续优化策略,提升业绩,确保与整体战略目标的一致性。每个指标的数据来源通常来自于相关部门的预算和实际操作记录,确保信息的准确性。