粒子群优化神经网络python代码
时间: 2023-07-22 22:05:04 浏览: 58
以下是一个简单的粒子群优化神经网络的 Python 代码示例:
```python
import numpy as np
# 定义神经网络
class NeuralNetwork:
def __init__(self, num_inputs, num_hidden, num_outputs):
self.input_size = num_inputs
self.hidden_size = num_hidden
self.output_size = num_outputs
# 初始化权重和偏置
self.weights1 = np.random.randn(self.input_size, self.hidden_size)
self.bias1 = np.random.randn(self.hidden_size)
self.weights2 = np.random.randn(self.hidden_size, self.output_size)
self.bias2 = np.random.randn(self.output_size)
# 前向传播函数
def forward(self, inputs):
z1 = np.dot(inputs, self.weights1) + self.bias1
a1 = np.tanh(z1)
z2 = np.dot(a1, self.weights2) + self.bias2
output = self.softmax(z2)
return output
# softmax函数
def softmax(self, x):
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum()
# 定义粒子群优化算法
class ParticleSwarmOptimizer:
def __init__(self, num_particles, num_iterations, neural_network):
self.num_particles = num_particles
self.num_iterations = num_iterations
self.neural_network = neural_network
# 初始化粒子的位置和速度
self.positions = np.random.uniform(-1, 1, size=(self.num_particles, self.get_num_weights()))
self.velocities = np.zeros((self.num_particles, self.get_num_weights()))
# 初始化全局最优位置
self.global_best_position = None
self.global_best_fitness = float('inf')
# 计算适应度函数
def fitness(self, weights):
self.neural_network.set_weights(weights)
loss = 0
for input, target in training_data:
output = self.neural_network.forward(input)
loss += cross_entropy_error(output, target)
fitness = 1 / (loss + 1e-10)
return fitness
# 粒子群优化算法主函数
def optimize(self):
for iteration in range(self.num_iterations):
for i in range(self.num_particles):
# 计算当前粒子的适应度和位置
fitness = self.fitness(self.positions[i])
if fitness > self.global_best_fitness:
self.global_best_fitness = fitness
self.global_best_position = self.positions[i]
# 更新粒子速度和位置
self.velocities[i] = self.update_velocity(self.velocities[i], self.positions[i], self.global_best_position)
self.positions[i] += self.velocities[i]
# 更新粒子速度
def update_velocity(self, velocity, position, global_best_position):
inertia_weight = 0.9
cognitive_weight = 2
social_weight = 2
r1 = np.random.rand(self.get_num_weights())
r2 = np.random.rand(self.get_num_weights())
cognitive_component = cognitive_weight * r1 * (self.global_best_position - position)
social_component = social_weight * r2 * (global_best_position - position)
new_velocity = inertia_weight * velocity + cognitive_component + social_component
return new_velocity
# 获取权重数量
def get_num_weights(self):
return self.neural_network.input_size * self.neural_network.hidden_size + self.neural_network.hidden_size * self.neural_network.output_size
# 训练数据
training_data = [
(np.array([0, 0]), np.array([1, 0])),
(np.array([0, 1]), np.array([0, 1])),
(np.array([1, 0]), np.array([0, 1])),
(np.array([1, 1]), np.array([1, 0])),
]
# 定义神经网络
neural_network = NeuralNetwork(num_inputs=2, num_hidden=5, num_outputs=2)
# 定义粒子群优化算法
num_particles = 30
num_iterations = 100
pso = ParticleSwarmOptimizer(num_particles, num_iterations, neural_network)
# 运行粒子群优化算法
pso.optimize()
# 输出结果
weights = pso.global_best_position
neural_network.set_weights(weights)
for input, target in training_data:
output = neural_network.forward(input)
print("Input:", input, "Target:", target, "Output:", output)
```
注意,这只是一个简单的示例代码,可能需要进行更多的调整和修改才能适用于您的实际问题。
阅读全文