给定一个整数数组 A=(a0,a1,…an-1),若 i<j 且 ai>aj,则<ai,aj>就为一个逆序对。例如数组(3,1,4,5,2)的逆序对有<3,1>,<3,2>,<4,2>,<5,2>。设计一个算法采用蛮力法求 A 中逆序对的个数即逆序数。设计算法求解逆序对的个数;给出算法代码
时间: 2024-02-26 15:57:45 浏览: 40
以下是使用蛮力法求解逆序对个数的Python代码:
```python
def count_reverse_pairs(arr):
count = 0
n = len(arr)
for i in range(n):
for j in range(i+1, n):
if arr[i] > arr[j]:
count += 1
return count
arr = [3, 1, 4, 5, 2]
print(count_reverse_pairs(arr)) # 输出 4
```
时间复杂度为 O(n^2),不适用于大规模数据的处理。
相关问题
C语言求解逆序数问题:给定一个整数数组A=(a0,a1,...,an-1),若i<j且ai>aj,则<ai,aj>就是一个逆序对。编写一个实验程序采用分治法求A中逆序对的个数,即逆序数。
在C语言中,我们可以利用归并排序的思想来解决这个问题,因为归并排序过程中会自然地将数组分为两部分,并且每一步都是从小到大合并,这有助于我们在合并过程中统计逆序对的数量。以下是基于归并排序的解决方案:
```c
#include <stdio.h>
// 归并排序过程,同时计算逆序数
void mergeSort(int A[], int left, int right, int* inversions) {
int mid = (left + right) / 2;
int temp[right - left + 1];
if (left < mid) {
mergeSort(A, left, mid, inversions);
}
if (mid < right) {
mergeSort(A, mid + 1, right, inversions);
}
int i = left, j = mid + 1, k = 0;
while (i <= mid && j <= right) {
if (A[i] <= A[j]) {
temp[k++] = A[i++];
} else {
*inversions += mid - i + 1; // 当前右侧所有元素都比左侧大,所以增加了mid-i+1个逆序对
temp[k++] = A[j++];
}
}
while (i <= mid) {
temp[k++] = A[i++];
}
while (j <= right) {
temp[k++] = A[j++];
}
// 合并
for (i = left; i <= right; i++) {
A[i] = temp[i - left];
}
}
// 主函数
int countInversions(int A[], int n) {
int inversions = 0;
mergeSort(A, 0, n - 1, &inversions);
return inversions;
}
int main() {
int A[] = {9, 7, 5, 11, 12, 2, 14, 3, 10, 6};
int n = sizeof(A) / sizeof(A[0]);
int result = countInversions(A, n);
printf("数组 %d 的逆序对总数为: %d\n", n, result);
return 0;
}
```
当你运行此程序,它会对数组`A`计算逆序对的数量,例如对于数组`{9, 7, 5, 11, 12, 2, 14, 3, 10, 6}`,输出将是逆序对的总数。
给定一个整数数组A=(a0,a1,…,an-1),若i<j且ai>aj,则<ai,aj>就为一个逆序对,例如数组(3,1,4,5,2)的逆序对有<3,1>,<3,2>,<4,2>,<5,2>。设计一个穷举算法求A中的逆序对的个数。
可以使用暴力算法,对于每个数,遍历它后面的数,如果发现逆序对,计数器加一。
Python 代码如下:
def count_inversions(arr):
count = 0
for i in range(len(arr)):
for j in range(i+1, len(arr)):
if arr[i] > arr[j]:
count += 1
return count
arr = [3, 1, 4, 5, 2]
print(count_inversions(arr)) # 输出 4
阅读全文