for ii = 1:length(P(:,1))%行 for jj = 1:length(P(1,:))%列 PS_L = sqrt((grid_x - jj).^2 + (grid_y - ii).^2); [xid_x,yid_y] = find(PS_L<=S(2)&PS_L>=S(1)); PS0(PS_L<=S(2)&PS_L>=S(1)) = P(ii,jj)/8+PS0(PS_L<=S(2)&PS_L>=S(1)); PS0(PS_L<=S(2)&PS_L>=S(1))=P(ii,jj)/length(xid_x)+PS0(PS_L<=S(2)&PS_L>=S(1)); end end 优化该段matlab程序,使其运行速度加快,但不能改变其结果
时间: 2024-04-10 07:27:10 浏览: 45
GM(1,1)代码
可以尝试使用矩阵运算来优化该段代码,减少循环的次数。以下是对代码进行优化的示例:
```matlab
% 获取矩阵的大小
[row, col] = size(P);
% 创建相应大小的网格坐标矩阵
[grid_x, grid_y] = meshgrid(1:col, 1:row);
% 计算所有网格点到P矩阵中每个元素的距离
PS_L = sqrt((grid_x - repmat(1:col, row, 1)).^2 + (grid_y - repmat((1:row)', 1, col)).^2);
% 找到满足条件的网格点索引
[xid_x, yid_y] = find(PS_L <= S(2) & PS_L >= S(1));
% 根据索引更新PS0矩阵
PS0(xid_x + (yid_y-1)*row) = P(sub2ind([row, col], xid_x, yid_y))/8 + PS0(xid_x + (yid_y-1)*row);
PS0(xid_x + (yid_y-1)*row) = P(sub2ind([row, col], xid_x, yid_y))/length(xid_x) + PS0(xid_x + (yid_y-1)*row);
```
通过使用矩阵运算,我们可以避免显式的循环,并且将一些计算操作合并到一起,从而提高代码的运行速度。请注意,我对代码进行了一些假设,例如`grid_x`和`grid_y`是从1开始递增的,`S`是一个长度为2的向量等等。你可以根据实际情况对代码进行调整。
阅读全文