java2/1 3/2 5/3前二十项和
时间: 2023-08-16 07:02:16 浏览: 102
Java求1+2!+3!+...+20!的和的代码
5星 · 资源好评率100%
### 回答1:
java2/1 3/2 5/3的前二十项和为:
1 + 1.5 + 1.6666666666666667 + 1.875 + 2.066666666666667 + 2.283333333333333 + 2.45 + 2.638095238095238 + 2.8222222222222224 + 2.9761904761904763 + 3.1575757575757576 + 3.3095238095238093 + 3.468253968253968 + 3.6174603174603174 + 3.783333333333333 + 3.926797385620915 + 4.0777777777777775 + 4.236601307189542 + 4.372222222222222 + 4.535978835978836 = 49.98148148148148
### 回答2:
这是一个求解前二十项和的问题。题目给出的数列是 2/1, 3/2, 5/3 。我们需要计算前二十项的和。
首先,我们先列出前二十项:
2/1, 3/2, 5/3, 8/5, 13/8, 21/13, 34/21, 55/34, 89/55, 144/89, 233/144, 377/233, 610/377, 987/610, 1597/987, 2584/1597, 4181/2584, 6765/4181, 10946/6765, 17711/10946
接下来,我们进行求和计算。首先将分数转换成小数相加更加方便:
2/1 = 2.00000
3/2 = 1.50000
5/3 = 1.66667
8/5 = 1.60000
...
10946/6765 = 1.61803
17711/10946 = 1.61803
将这些小数相加:
2.00000 + 1.50000 + 1.66667 + 1.60000 + ... + 1.61803 + 1.61803
计算这些小数的和,得到结果为:
约等于 29.55279。
所以,数列 java2/1, 3/2, 5/3 的前二十项和为约等于 29.55279。
### 回答3:
要计算 java2/1 3/2 5/3 前二十项的和,我们首先了解这个序列的规律。
这个序列可以表示为:1/1 2/1 2/1 4/2 5/3 7/4 10/6 14/8 20/11 ...
观察到分子的增量是 1,2,2,3,4,5,6 ...,而分母的增量是 1,1,2,3,4,6,8 ...
可以发现,分子的增量是按照自然数逐一增加的,而分母的增量是分子上一个数的值加1。所以,如果我们已经计算出前 n-1 项的和 A,那么第 n 项的值可以表示为 (n + A) / (n + 1)。
现在我们开始计算这个序列的前二十项和:
1/1 的前缀和是 1/1.
计算第二项时,使用上面的规律,(2 + 1/1) / (2 + 1) = 3/2,所以前两项的和是 1/1 + 3/2 = 5/2.
计算第三项时,(3 + 5/2) / (3 + 1) = 5/3,所以前三项的和是 1/1 + 3/2 + 5/3 = 23/6.
以此类推,计算前四项时,(4 + 23/6) / (4 + 1) = 7/4,前四项的和是 1/1 + 3/2 + 5/3 + 7/4 = 45/12.
继续计算,计算前五项时,(5 + 45/12) / (5 + 1) = 10/6,所以前五项的和是 1/1 + 3/2 + 5/3 + 7/4 + 10/6 = 23/4.
以此类推,依次计算前六项、前七项... 前二十项的和。
最终得到前二十项的和为 3873/420.
所以,java2/1 3/2 5/3 前二十项的和是 3873/420。
阅读全文