给出主函数的主要流程步骤:void main(void) { Init_Timer0(); //定时器0初始化 UART_Init(); DelayMs(200); //延时有助于稳定 Init_ST7920(); //初始化 ClrScreen(); buzzer =1; while(1) { if(dealSuduFlag == 1) { Sudu=(float)PluNum*0.2*3.6/2; //m/s 20个脉冲为1圈 3s时间进行检测 disPlu = PluNum/2; //转速 PluNum=0; dealSuduFlag=0; juli = juli+Sudu*0.2; //公里 } if(disFlag==1) //显示 { disFlag=0; //标志位清零 ReadTempFlag++; //读取温度计时 if(ReadTempFlag >= 3) { ReadTempFlag=0; temp1=ReadTemperature(); //读取温度 temperature=(float)temp1*0.0625; //温度值转换 } if((yeweiG == 0)&&(yeweiD == 0))//上下液位有水 { yeweiFlag = 'H'; } sprintf(dis0,"液位 %c ",yeweiFlag);//打印 LCD_PutString(0,1,dis0,16);//显示 sprintf(dis1,"温度 %4.1fC 40 ",temperature);//打印 LCD_PutString(0,2,dis1,16);//显示 if((Sudu>1.5)||(temperature>40)||(yeweiFlag=='L')) //异常情况 {buzzer = !buzzer;} } } }

时间: 2024-01-13 21:02:24 浏览: 20
该主函数的主要流程步骤为: 1. 初始化定时器0,用于检测车轮转速。 2. 初始化串口通信。 3. 延时等待稳定。 4. 初始化液晶屏幕ST7920。 5. 清空屏幕。 6. 鸣笛。 7. 进入无限循环。 8. 如果检测到车轮转速有变化,则计算车速和里程,并清空转速计数器。 9. 如果需要显示信息,则读取温度,检测液位,打印相关信息,并在异常情况下触发蜂鸣器。 10. 持续循环。
相关问题

给出主函数的主要流程步骤:void main(void) { Init_Timer0(); //定时器0初始化 UART_Init(); DelayMs(200); //延时有助于稳定 Init_ST7920(); //初始化 ClrScreen(); buzzer =1; while(1) { if(dealSuduFlag == 1) { Sudu=(float)PluNum0.23.6/2; //m/s 20个脉冲为1圈 3s时间进行检测 disPlu = PluNum/2; //转速 PluNum=0; dealSuduFlag=0; juli = juli+Sudu0.2; //公里 } if(disFlag==1) //显示 { disFlag=0; //标志位清零 ReadTempFlag++; //读取温度计时 if(ReadTempFlag >= 3) { ReadTempFlag=0; temp1=ReadTemperature(); //读取温度 temperature=(float)temp10.0625; //温度值转换 } if((yeweiG == 0)&&(yeweiD == 0))//上下液位有水 { yeweiFlag = 'H'; } sprintf(dis0,"液位 %c ",yeweiFlag);//打印 LCD_PutString(0,1,dis0,16);//显示 sprintf(dis1,"温度 %4.1fC 40 ",temperature);//打印 LCD_PutString(0,2,dis1,16);//显示 if((Sudu>1.5)||(temperature>40)||(yeweiFlag=='L')) //异常情况 {buzzer = !buzzer;} } } }

主函数的主要流程步骤如下: 1.初始化定时器0,用于计算转速和里程数。 2.初始化串口,用于与其他设备通信。 3.延时200ms,有助于提高系统稳定性。 4.初始化ST7920液晶屏,用于显示液位、温度等信息。 5.清空屏幕。 6.开启蜂鸣器。 7.进入循环,不断检测传感器数据并进行处理。 8.如果检测到转速变化,计算车速和里程数,并更新标志位。 9.如果需要显示数据,读取温度计时器计数器加1,如果达到3就读取温度值。 10.根据上下液位的状态确定液位标志位。 11.将液位和温度信息格式化为字符串并在液晶屏上显示。 12.如果检测到异常情况,开启蜂鸣器。 13.回到循环开始继续检测数据。

在这段主函数代码的基础上写一个ISD1820语音芯片采集和存储的代码,语音存储在ISD1820芯片内部:#include "led.h" #include "delay.h" #include "sys.h" #include "usart.h" #include <stdio.h> #include "timer.h" #include "key.h" #include "myled.h" #include "lcd1602.h" char dis0[17]; //暂存数组 unsigned char disFlag=0;//更新显示标志 static unsigned char rekey =0; unsigned char playMode =0; //设置标志 int main(void) { delay_init(); //延时函数初始化 uart_init(9600); //串口初始化为115200 // uart2_init(9600) ; TIM3_Int_Init(499,7199);//5ms 初始化定时器 MyLED_Init(); //初始化输出 KEY_Init(); //初始化输入 Lcd_GPIO_init(); //初始化lcd引脚 Lcd_Init(); //初始化lcd屏幕 delay_ms(20); Lcd_Puts(0,0,(u8 *)"Loop Playback "); //初始化显示 //Key trigger Lcd_Puts(0,1,(u8 *)"Sound recording "); //初始化显示 playMode =0;//初始化方式 while(1) { if(disFlag == 1) { disFlag = 0;//清空标志 if(key3==0){//录音 yy_rec = 1; //录音中 Lcd_Puts(0,1,(u8 *)"Sound recording "); //显示 } else{ yy_rec = 0; //停止录音 Lcd_Puts(0,1,(u8 *)" "); } if(playMode == 0){//手动播报 Lcd_Puts(0,0,(u8 *)"Key trigger "); } else{//循环播报 yy_play = !yy_play; //播报 Lcd_Puts(0,0,(u8 *)"Loop Playback "); //初始化显示 // } } if((key1==0)||(key2==0)) //检测到按键按下 { delay_ms(10); //小抖动 if(rekey==0) { if(key1==0) //检测是否按下 { rekey=1; if(playMode ) { //播放方式 playMode = 0; } else{ playMode = 1; } } else if(key2==0)//设置值键 { rekey=1; yy_play =1; //上电动作下 delay_ms(200); yy_play =0;//关闭运行 } } } else { rekey=0; //防止重复检测到按键 } } }

好的,以下是基于主函数代码的ISD1820语音芯片采集和存储的代码,语音存储在ISD1820芯片内部的实现方法: ``` #include "led.h" #include "delay.h" #include "sys.h" #include "usart.h" #include <stdio.h> #include "timer.h" #include "key.h" #include "myled.h" #include "lcd1602.h" char dis0[17]; //暂存数组 unsigned char disFlag=0;//更新显示标志 static unsigned char rekey =0; unsigned char playMode =0; //设置标志 void ISD1820_Record() { USART_SendData(USART1, 0x22); // 发送指令,开始录音 while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); // 等待发送完成 delay_ms(5000); // 录音 5 秒 USART_SendData(USART1, 0x77); // 发送指令,停止录音 while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); // 等待发送完成 delay_ms(1000); // 停止录音后需要等待一段时间,让 ISD1820 完成存储操作 } int main(void) { delay_init(); //延时函数初始化 uart_init(9600); //串口初始化为115200 TIM3_Int_Init(499,7199);//5ms 初始化定时器 MyLED_Init(); //初始化输出 KEY_Init(); //初始化输入 Lcd_GPIO_init(); //初始化lcd引脚 Lcd_Init(); //初始化lcd屏幕 delay_ms(20); Lcd_Puts(0,0,(u8 *)"Loop Playback "); //初始化显示 Lcd_Puts(0,1,(u8 *)"Sound recording "); //初始化显示 playMode = 0; //初始化方式 while (1) { if (disFlag == 1) { disFlag = 0; //清空标志 if (key3 == 0) { //录音 ISD1820_Record(); //调用录音函数 Lcd_Puts(0,1,(u8 *)" "); //清空屏幕 } if (playMode == 0) { //手动播放 if (key1 == 0) { //检测到按键按下 delay_ms(10); //小抖动 if (rekey == 0) { rekey = 1; yy_play = 1; //播放语音 delay_ms(200); yy_play = 0; //关闭运行 } } } else { //循环播放 if (yy_play == 0) { //检测到播放结束 yy_play = 1; //播放语音 } } } if ((key1 == 0) || (key2 == 0)) { //检测到按键按下 delay_ms(10); //小抖动 if (rekey == 0) { if (key1 == 0) { //检测是否按下 rekey = 1; if (playMode) { //播放方式 playMode = 0; Lcd_Puts(0,0,(u8 *)"Key trigger "); } else { playMode = 1; Lcd_Puts(0,0,(u8 *)"Loop Playback "); } } else if (key2 == 0) { //设置值键 rekey = 1; yy_play = 1; //播放语音 delay_ms(200); yy_play = 0; //关闭运行 } } } else { rekey = 0; //防止重复检测到按键 } } } ``` 以上代码中,我们在 `ISD1820_Record()` 函数中实现了 ISD1820 语音芯片的录音功能。在 `main()` 函数中,当检测到 `key3` 按键按下时,调用 `ISD1820_Record()` 函数进行录音。在录音结束后,清空屏幕。 此外,我们还调整了 `main()` 函数中的逻辑,以适应录音功能的实现。当 `playMode` 为 0 时,表示手动播放模式,此时按下 `key1` 按键会触发播放语音的动作。当 `playMode` 为 1 时,表示循环播放模式,程序会自动循环播放录制的语音。我们在 `ISD1820_Record()` 函数中加入了延时操作,以确保 ISD1820 芯片在录音结束后能够完成存储操作。

相关推荐

给出主函数的主要流程步骤:#include "system.h" #include "lcd12864_st7920.h" #include "delay.h" #include <stdio.h> #include "18b20.h" sbit buzzer = P1^3 ; sbit yeweiG =P1^0; sbit yeweiD =P1^1; unsigned char xdata dis0[16];//定义显示区域临时存储数组 unsigned char xdata dis1[16]; unsigned char xdata dis2[16]; unsigned char xdata dis3[16]; unsigned char i; unsigned char ReadTempFlag;//定义读时间标志 int temp1; //温度读取值 float temperature; unsigned long time_20ms=0; //定时器计数 float Sudu =0; //速度值 unsigned int PluNum = 0; //脉冲数 unsigned int disPlu = 0; //脉冲数 bit dealSuduFlag =0; //处理速度标志 float xdata juli=0; //距离 bit disFlag =0;//更新显示 unsigned char yeweiFlag = 'N';//液位标志 void main(void) { Init_Timer0(); //定时器0初始化 UART_Init(); DelayMs(200); //延时有助于稳定 Init_ST7920(); //初始化 ClrScreen(); buzzer =1; // sprintf(dis0,"20%02d-%02d-%02d ",(int)time_buf1[1],(int)time_buf1[2],(int)time_buf1[3],(int)time_buf1[7]);//年月日周 // LCD_PutString(0,1,dis0,16);//显示第时间 // // sprintf(dis0,"%02d:%02d:%02d ",(int)time_buf1[4],(int)time_buf1[5],(int)time_buf1[6]);//时分秒 // LCD_PutString(0,2,dis0,16);//显示第时间 // // LCD_PutString(0,3,"起:5元 3元/km ",16); //固定显示价格 // LCD_PutString(0,4,"实际价格",8); // uartSendStr("ready ok !",10); // Ds1302_Write_Time(); while(1) { if(dealSuduFlag == 1) { Sudu=(float)PluNum0.23.6/2; //m/s 20个脉冲为1圈 3s时间进行检测 disPlu = PluNum/2; //转速 PluNum=0; dealSuduFlag=0; juli = juli+Sudu0.2; //公里 } if(disFlag==1) //显示 { disFlag=0; //标志位清零 ReadTempFlag++; //读取温度计时 if(ReadTempFlag >= 3) { ReadTempFlag=0; temp1=ReadTemperature(); //读取温度 temperature=(float)temp10.0625; //温度值转换 } if((yeweiG == 0)&&(yeweiD == 0))//上下液位有水 { yeweiFlag = 'H'; } sprintf(dis0,"液位 %c ",yeweiFlag);//打印 LCD_PutString(0,1,dis0,16);//显示 sprintf(dis1,"温度 %4.1fC 40 ",temperature);//打印 LCD_PutString(0,2,dis1,16);//显示 if((Sudu>1.5)||(temperature>40)||(yeweiFlag=='L')) //异常情况 {buzzer = !buzzer;} } } }

void OscDispAutoMagic(unsigned char Data,u32 SizeX,u32 SizeY,u32 OffsetX,u32 OffsetY) { static u32 pos=0; static s32 x=0,y=0,z=0; static u32 id=0; #ifdef PWMlightMode if(id==0) { PAout(7)=0; #endif DAC->DHR12RD=MapData[LDcnt]; LDcnt++; if(LDcnt>=LDlen) { LDcnt=0; PAout(6)=0; } else PAout(6)=1; #ifdef PWMlightMode } else PAout(7)=1; id=(id+1)%2; #endif } u8 DispPoi=0; void TIM3_IRQHandler(void)//当 TIM3 定时器发生中断时,它会清除中断标志位,并以特定参数调用 OscDispAutoMagic 函数。 { if(TIM3->SR) { TIM3->SR=0; OscDispAutoMagic((u8)0,64,64,0,0); } } extern int Msg_PathFin; #define DPMax2 (MaxDots*2) extern u8 DotPath[DPMax2]; int main(void) { int i=0; //float x,y; Stm32_Clock_Init(9); //系统时钟设置 uart_init(72,115200); //串口初始化为115200 delay_init(72);//延时初始化 Timer3_Init(); Timer2_Init(); DAC_Init(); GPIOA->CRL&=0x00FFFFFF; GPIOA->CRL|=0x33000000; PAout(6)=0; PAout(7)=1; GPIOA->CRH&=0x00FFFFF0; GPIOA->CRH|=0x88000003; PAout(8)=1; MapData[0]=XYc_OutputInv(1000,1000); MapData[1]=XYc_OutputInv(1500,1000); MapData[2]=XYc_OutputInv(2000,1000); LDlen=3; delay_ms(5000); PAout(8)=1; while(1) { if(Msg_PathFin) { LDlen=3; for(i=0;i<Msg_PathFin;i++) { MapData[i]=XYc_Output(DotPath[2*i+1]24,DotPath[2i]*24); } if(Msg_PathFin>=MaxDots)LDlen=MaxDots; else if(Msg_PathFin>=3)LDlen=Msg_PathFin; else LDlen=Msg_PathFin+2; Msg_PathFin=0; } } } 修改代码,控制振镜XY改为控制振镜X,读取数组中值,当读取到1振镜x向左偏振,读到0振镜x向右偏转

最新推荐

recommend-type

C8051f020 UART0

//UART0初始化 EX1= 1; //开INT1 EA = 1; //开中断 rxd_str=0; while(1) { if(uart0_flag) { rxd_str=0; uart0_flag = 0; m=ur0_rxd; txd_string(m,LENM); } } //---------判断本设备命令及...
recommend-type

网络编程网络编程网络编程

网络编程网络编程网络编程网络编程
recommend-type

setuptools-5.4.zip

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

基于树莓派智能小车(H5页面操作移动+实时显示摄像头内容+各类传感器)源码+详细文档+全部资料齐全 高分项目.zip

【资源说明】 基于树莓派智能小车(H5页面操作移动+实时显示摄像头内容+各类传感器)源码+详细文档+全部资料齐全 高分项目.zip基于树莓派智能小车(H5页面操作移动+实时显示摄像头内容+各类传感器)源码+详细文档+全部资料齐全 高分项目.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依