numpy.ndarray转list
时间: 2023-04-29 13:04:37 浏览: 110
可以使用 numpy 模块中的 tolist() 方法将 numpy.ndarray 转换为 Python 列表。
示例:
```python
import numpy as np
arr = np.array([1, 2, 3])
lst = arr.tolist()
print(lst)
```
输出:
```
[1, 2, 3]
```
也可以直接使用 python 内置函数 `list()` 将 ndarray 转化为list
```python
arr = np.array([1, 2, 3])
lst = list(arr)
```
输出同上
相关问题
python numpy.ndarray 转list
可以使用tolist()函数将numpy.ndarray转换为list。
是的,可以使用 `tolist()` 函数将 NumPy 数组转换为 Python 列表。例如,如果 `arr` 是一个 NumPy 数组,你可以使用以下代码将其转换为列表:
```python
import numpy as np
arr = np.array([1, 2, 3])
lst = arr.tolist()
```
现在,`lst` 是一个 Python 列表,它包含与 `arr` 相同的元素。当您创建一个NumPy数组时,您可以将其视为具有以下属性的列表:
1. 数组的维数或轴数,也称为rank。
2. 数组的形状,即每个轴的长度。
3. 数组的数据类型,例如整数、浮点数或布尔值。
此外,NumPy数组还具有许多有用的属性和方法,包括:
1. ndarray.ndim:数组的轴数或维数(rank)。
2. ndarray.shape:数组的形状,以整数元组的形式返回,例如(3,4)表示3行4列的矩阵。
3. ndarray.size:数组中元素的总数。
4. ndarray.dtype:描述数组中元素类型的对象,例如numpy.int32、numpy.int16或numpy.float64等。
5. ndarray.itemsize:数组中每个元素的字节大小。
6. ndarray.data:包含数组实际元素的缓冲区,通常不需要直接访问它。
下面是一个例子:
```
import numpy as np
# 创建一个形状为(2,3)的二维数组
a = np.array([[1,2,3], [4,5,6]])
print("ndim:", a.ndim) # 输出: 2
print("shape:", a.shape) # 输出: (2, 3)
print("size:", a.size) # 输出: 6
print("dtype:", a.dtype) # 输出: int64
print("itemsize:", a.itemsize) # 输出: 8
print("data:", a.data) # 输出: <memory at 0x7fb93883e9a0>
```
python numpy.ndarray转list
将numpy ndarray转换为Python列表的一种简单方法是使用tolist()函数。例如,如果你有一个形状为 (3, 3) 的numpy数组arr,你可以将它转换为一个Python列表如下所示:
```python
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
lst = arr.tolist()
print(lst)
```
输出结果为:
```python
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
```
这将把numpy数组转换为一个Python列表,其中每个元素都是一个列表,表示数组的一行。
阅读全文