def DenSeNet_SE(input_shape=None, classes=1000): img_input = Input(shape=input_shape) bn_axis = 3 x = ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input) x = Conv2D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x) x = BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name='conv1/bn')(x) x = Activation('relu', name='conv1/relu')(x) x = ZeroPadding2D(padding=((1, 1), (1, 1)))(x) x = MaxPooling2D(3, strides=2, name='pool1')(x) x = dense_block(x, 6, name='conv2') x = se_block(x) x = transition_block(x, 0.5, name='pool2') x = dense_block(x, 12, name='conv3') x = se_block(x) x = transition_block(x, 0.5, name='pool3') x = dense_block(x, 24, name='conv4') x = se_block(x) x = transition_block(x, 0.5, name='pool4') x = dense_block(x, 16, name='conv5') x = se_block(x) x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='bn')(x) x = Activation('relu', name='relu')(x) x = GlobalAveragePooling2D(name='avg_pool')(x) x = Dense(classes, activation='softmax', name='fc1000')(x) return model解释一下这段代码
时间: 2023-11-09 20:08:29 浏览: 134
这段代码定义了一个基于DenseNet和SE-Net结构的深度神经网络模型。具体来说,该模型包括了一系列的卷积层、批归一化层、激活函数层、池化层、SE块和全局平均池化层。其中,dense_block函数实现了DenseNet中的密集连接块,transition_block函数实现了DenseNet中的过渡块,se_block函数实现了SE-Net中的SE块。
该模型的输入是一个二维图像,输出是一个softmax分类器,可用于图像分类任务。其中,classes参数表示分类器的输出类别数。
阅读全文