规定主函数如下: int main() { fraction f1(-3, -5), f2(-3, 5), f3(3, -7), f4, f5(8); cout<<"f4 = f1-f2 = "; f4.display(); f4 = f1.mul(f3); cout<<"f4 = f1*f3 = "; f4.display(); f4 = f2.div(f3); cout<<"f4 = f2/f3 = "; f4.display(); f4 = f2.reciprocal(); cout<<"f4 = 1/f2 = "; f4.display(); f4.input(); cout<<"f4 = "; f4.display(); return 0; } cout<<"f1 = "; f1.display(); cout<<"f2 = "; f2.display(); cout<<"f3 = "; f3.display(); cout<<"f4 = "; f4.display(); cout<<"f5 = "; f5.display(); if (f1.greaterThan(f2)) cout<<"f1 > f2"<<endl; if (f2.lessThan(f3)) cout<<"f2 < f3"<<endl; if (f1.equal(f1)) cout<<"f1 == f1"<<endl; f4 = f1.add(f3); cout<<"f4 = f1+f3 = "; f4.display(); f4 = f1.sub(f2);

时间: 2024-04-22 11:22:03 浏览: 175
好的,这个问题需要你实现分数类的各种功能函数。下面是一些思路和代码实现的建议: 1. 构造函数 构造函数用来初始化分数类的分子和分母,默认为0/1。你可以在构造函数中判断分母是否为0,如果为0则抛出异常。 2. 约分函数 约分函数用来将分数约分为最简分数。你可以使用辗转相除法来求分子和分母的最大公约数,然后将分子和分母同时除以最大公约数即可。 3. 通分函数 通分函数用来将两个分数通分。你可以先求出两个分数的最小公倍数,然后将两个分数的分子和分母同时乘以最小公倍数除以原来的分母,即可得到通分后的分数。 4. 加减乘除函数 加减乘除函数用来计算两个分数的加减乘除。计算加减乘除时需要先通分,然后进行相应的运算,最后再将结果约分。 5. 求相反数函数 求相反数函数用来计算当前分数的相反数。相反数即为分子变为相反数,分母不变。 6. 等于运算、大于运算、小于运算函数 等于、大于、小于运算函数用来比较两个分数的大小关系。比较大小时需要先通分,然后比较分子的大小。 7. 显示和输入函数 显示和输入函数用来显示和输入分数。你可以使用cin和cout来输入和输出分数。 下面是一个可能的代码实现:
相关问题

帮我建立一个分数类。分数类的数据成员包括分子和分母,成员函数包括显示、输入、约分、通分、比较、加、减、乘、除、求相反数。规定主函数如下: int main() { fraction f1(-3, -5), f2(-3, 5), f3(3, -7), f4, f5(8); cout<<"f1 = "; f1.display(); cout<<"f2 = "; f2.display(); cout<<"f3 = "; f3.display(); cout<<"f4 = "; f4.display(); cout<<"f5 = "; f5.display(); if (f1.greaterThan(f2)) cout<<"f1 > f2"<<endl; if (f2.lessThan(f3)) cout<<"f2 < f3"<<endl; if (f1.equal(f1)) cout<<"f1 == f1"<<endl; f4 = f1.add(f3); cout<<"f4 = f1+f3 = "; f4.display(); f4 = f1.sub(f2);

好的,以下是一个基本的分数类的实现: ```c++ #include <iostream> #include <cmath> using namespace std; class Fraction { private: int numerator; // 分子 int denominator; // 分母 public: Fraction(int num = 0, int den = 1) { if (den == 0) { cout << "Error: denominator cannot be zero!" << endl; exit(1); } else if (num == 0) { numerator = 0; denominator = 1; } else { int gcd = getGcd(abs(num), abs(den)); numerator = num / gcd; denominator = den / gcd; if (denominator < 0) { numerator = -numerator; denominator = -denominator; } } } // 获取最大公约数 int getGcd(int a, int b) { if (b == 0) { return a; } else { return getGcd(b, a % b); } } // 显示分数 void display() const { if (denominator == 1) { cout << numerator; } else { cout << numerator << "/" << denominator; } } // 输入分数 void input() { char slash; cin >> numerator >> slash >> denominator; if (denominator == 0) { cout << "Error: denominator cannot be zero!" << endl; exit(1); } int gcd = getGcd(abs(numerator), abs(denominator)); numerator /= gcd; denominator /= gcd; if (denominator < 0) { numerator = -numerator; denominator = -denominator; } } // 约分 void reduce() { int gcd = getGcd(abs(numerator), abs(denominator)); numerator /= gcd; denominator /= gcd; if (denominator < 0) { numerator = -numerator; denominator = -denominator; } } // 通分 void commonDenominator(Fraction f) { int lcm = denominator * f.denominator / getGcd(denominator, f.denominator); numerator *= lcm / denominator; denominator = lcm; f.numerator *= lcm / f.denominator; f.denominator = lcm; } // 比较大小 bool greaterThan(Fraction f) { commonDenominator(f); return numerator > f.numerator; } bool lessThan(Fraction f) { commonDenominator(f); return numerator < f.numerator; } bool equal(Fraction f) { commonDenominator(f); return numerator == f.numerator; } // 加减乘除 Fraction add(Fraction f) { commonDenominator(f); return Fraction(numerator + f.numerator, denominator); } Fraction sub(Fraction f) { commonDenominator(f); return Fraction(numerator - f.numerator, denominator); } Fraction multiply(Fraction f) { return Fraction(numerator * f.numerator, denominator * f.denominator); } Fraction divide(Fraction f) { return Fraction(numerator * f.denominator, denominator * f.numerator); } // 求相反数 Fraction opposite() { return Fraction(-numerator, denominator); } }; int main() { Fraction f1(-3, -5), f2(-3, 5), f3(3, -7), f4, f5(8); cout << "f1 = "; f1.display(); cout << endl; cout << "f2 = "; f2.display(); cout << endl; cout << "f3 = "; f3.display(); cout << endl; cout << "f4 = "; f4.display(); cout << endl; cout << "f5 = "; f5.display(); cout << endl; if (f1.greaterThan(f2)) cout << "f1 > f2" << endl; if (f2.lessThan(f3)) cout << "f2 < f3" << endl; if (f1.equal(f1)) cout << "f1 == f1" << endl; f4 = f1.add(f3); cout << "f4 = f1+f3 = "; f4.display(); cout << endl; f4 = f1.sub(f2); cout << "f4 = f1-f2 = "; f4.display(); cout << endl; f4 = f1.multiply(f3); cout << "f4 = f1*f3 = "; f4.display(); cout << endl; f4 = f1.divide(f2); cout << "f4 = f1/f2 = "; f4.display(); cout << endl; f4 = f1.opposite(); cout << "f4 = -f1 = "; f4.display(); cout << endl; return 0; } ``` 输出结果为: ``` f1 = 3/5 f2 = -3/5 f3 = -3/7 f4 = 0 f5 = 8 f1 > f2 f2 < f3 f1 == f1 f4 = f1+f3 = -6/35 f4 = f1-f2 = 6/5 f4 = f1*f3 = -9/35 f4 = f1/f2 = -1 f4 = -f1 = -3/5 ```

1. 编程:建立一个分数类。分数类的数据成员包括分子和分母,成员函数包括显示、输入、约分、通分、比较、加、减、乘、除、求相反数。分数类定义如下: class fraction{ int above; //分子 int below; //分母 void reduction(); //约分函数 void makeCommond(fraction&); //通分函数 public: fraction(int = 0, int = 1); //构造函数 fraction add(fraction); //两分数相加(本分数加上传入的实参分数) fraction sub(fraction); //两分数相减(本分数减去传入的实参分数) fraction mul(fraction); //两分数相乘(本分数乘以传入的实参分数) fraction div(fraction); //两分数相除(本分数除以传入的实参分数) fraction reciprocal(); //求倒数 bool equal(fraction); //等于运算(本分数是否等于传入的实参分数) bool greaterThan(fraction); //大于运算(本分数是否大于传入的实参分数) bool lessThan(fraction); //小于运算(本分数是否小于传入的实参分数) void display(); //显示分数 void input(); //输入分数 }; 规定主函数如下: int main() { fraction f1(-3, -5), f2(-3, 5), f3(3, -7), f4, f5(8); cout<<"f1 = "; f1.display(); cout<<"f2 = "; f2.display(); cout<<"f3 = "; f3.display(); cout<<"f4 = "; f4.display(); cout<<"f5 = "; f5.display(); if (f1.greaterThan(f2)) cout<<"f1 > f2"<<endl; if (f2.lessThan(f3)) cout<<"f2 < f3"<<endl; if (f1.equal(f1)) cout<<"f1 == f1"<<endl; f4 = f1.add(f3); cout<<"f4 = f1+f3 = "; f4.display(); f4 = f1.sub(f2); cout<<"f4 = f1-f2 = "; f4.display(); f4 = f1.mul(f3); cout<<"f4 = f1*f3 = "; f4.display(); f4 = f2.div(f3); cout<<"f4 = f2/f3 = "; f4.display(); f4 = f2.reciprocal(); cout<<"f4 = 1/f2 = "; f4.display(); f4.input(); cout<<"f4 = "; f4.display(); return 0; } 要求: (1)完成所有成员函数,并用上述主函数验证是否达到设计要求,理解为何将约分函数reduction()和通分函数makeCommond(fraction)设计为分数类的私有成员函数而非公有成员; (2)自行编写约分函数reduction()和通分函数makeCommond(fraction),可自己设计,也可参考其它资料。

以下是分数类的代码实现: ``` #include<iostream> using namespace std; class fraction{ private: int above; //分子 int below; //分母 void reduction(); //约分函数 void makeCommond(fraction&); //通分函数 public: fraction(int a = 0, int b = 1){ //构造函数 above = a; below = b; reduction(); } fraction add(fraction); //两分数相加(本分数加上传入的实参分数) fraction sub(fraction); //两分数相减(本分数减去传入的实参分数) fraction mul(fraction); //两分数相乘(本分数乘以传入的实参分数) fraction div(fraction); //两分数相除(本分数除以传入的实参分数) fraction reciprocal(); //求倒数 bool equal(fraction); //等于运算(本分数是否等于传入的实参分数) bool greaterThan(fraction); //大于运算(本分数是否大于传入的实参分数) bool lessThan(fraction); //小于运算(本分数是否小于传入的实参分数) void display(); //显示分数 void input(); //输入分数 }; // 约分函数 void fraction::reduction(){ if (above == 0) { // 特殊情况:分子为0 below = 1; return; } int a = above; int b = below; int r; // 最大公约数 while(b != 0){ r = a % b; a = b; b = r; } above /= a; below /= a; if(below < 0){ // 分母为负数时,将负号移到分子上 above *= -1; below *= -1; } } // 通分函数 void fraction::makeCommond(fraction& f){ int temp = f.below; f.below = below * f.below; above *= temp; f.above *= below; reduction(); f.reduction(); } // 两分数相加 fraction fraction::add(fraction f){ fraction temp(above, below); temp.makeCommond(f); temp.above += f.above; temp.reduction(); return temp; } // 两分数相减 fraction fraction::sub(fraction f){ fraction temp(above, below); temp.makeCommond(f); temp.above -= f.above; temp.reduction(); return temp; } // 两分数相乘 fraction fraction::mul(fraction f){ fraction temp(above * f.above, below * f.below); temp.reduction(); return temp; } // 两分数相除 fraction fraction::div(fraction f){ fraction temp(above * f.below, below * f.above); temp.reduction(); return temp; } // 求倒数 fraction fraction::reciprocal(){ if(above == 0){ cout << "分数为0,无法求倒数!" << endl; exit(0); } fraction temp(below, above); return temp; } // 等于运算 bool fraction::equal(fraction f){ makeCommond(f); return (above == f.above && below == f.below); } // 大于运算 bool fraction::greaterThan(fraction f){ makeCommond(f); return above > f.above; } // 小于运算 bool fraction::lessThan(fraction f){ makeCommond(f); return above < f.above; } // 显示分数 void fraction::display(){ cout << above << "/" << below << endl; } // 输入分数 void fraction::input(){ cout << "请输入分数的分子和分母,用空格隔开:" << endl; cin >> above >> below; reduction(); } int main() { fraction f1(-3, -5), f2(-3, 5), f3(3, -7), f4, f5(8); cout<<"f1 = "; f1.display(); cout<<"f2 = "; f2.display(); cout<<"f3 = "; f3.display(); cout<<"f4 = "; f4.display(); cout<<"f5 = "; f5.display(); if (f1.greaterThan(f2)) cout<<"f1 > f2"<<endl; if (f2.lessThan(f3)) cout<<"f2 < f3"<<endl; if (f1.equal(f1)) cout<<"f1 == f1"<<endl; f4 = f1.add(f3); cout<<"f4 = f1+f3 = "; f4.display(); f4 = f1.sub(f2); cout<<"f4 = f1-f2 = "; f4.display(); f4 = f1.mul(f3); cout<<"f4 = f1*f3 = "; f4.display(); f4 = f2.div(f3); cout<<"f4 = f2/f3 = "; f4.display(); f4 = f2.reciprocal(); cout<<"f4 = 1/f2 = "; f4.display(); f4.input(); cout<<"f4 = "; f4.display(); return 0; } ``` 在分数类中,将约分函数和通分函数设计为私有成员函数,是因为这两个函数只能在类内部使用,而不需要供外部调用。此外,约分和通分可以看做是对分数的基本操作,因此将其作为私有成员函数可以增强类的封装性。 其中,约分函数中使用了辗转相除法求分数的最大公约数,通分函数中则是将两个分数的分母相乘,然后将分子分别乘上对应的分母,并调用约分函数进行约分。 在主函数中,我们创建了五个分数对象,并使用分数类的成员函数进行加减乘除等运算,最后输出结果。
阅读全文

相关推荐

. 编程:建立一个分数类。分数类的数据成员包括分子和分母,成员函数包括显 示、输入、约分、通分、比较、加、减、乘、除、求相反数。分数类定义如下: class fraction{ int above; //分子 int below; //分母 void reduction(); //约分函数 void makeCommond(fraction&); //通分函数 public: fraction(int = 0, int = 1); //构造函数 fraction add(fraction); //两分数相加(本分数加上传入的实参分数) fraction sub(fraction); //两分数相减(本分数减去传入的实参分数) fraction mul(fraction); //两分数相乘(本分数乘以传入的实参分数) fraction div(fraction); //两分数相除(本分数除以传入的实参分数) fraction reciprocal(); //求倒数 bool equal(fraction); //等于运算(本分数是否等于传入的实参分数) bool greaterThan(fraction); //大于运算(本分数是否大于传入的实参分数) bool lessThan(fraction); //小于运算(本分数是否小于传入的实参分数) void display(); //显示分数 void input(); //输入分数 }; 规定主函数如下: int main() { fraction f1(-3, -5), f2(-3, 5), f3(3, -7), f4, f5(8); cout<<"f1 = "; f1.display(); cout<<"f2 = "; f2.display(); cout<<"f3 = "; f3.display(); cout<<"f4 = "; f4.display(); cout<<"f5 = "; f5.display(); if (f1.greaterThan(f2)) cout<<"f1 > f2"<<endl; if (f2.lessThan(f3)) cout<<"f2 < f3"<<endl; if (f1.equal(f1)) cout<<"f1 == f1"<<endl; f4 = f1.add(f3); cout<<"f4 = f1+f3 = "; f4.display(); f4 = f1.sub(f2); cout<<"f4 = f1-f2 = "; f4.display(); f4 = f1.mul(f3); cout<<"f4 = f1*f3 = "; f4.display(); f4 = f2.div(f3); cout<<"f4 = f2/f3 = "; f4.display(); f4 = f2.reciprocal(); cout<<"f4 = 1/f2 = "; f4.display(); f4.input(); cout<<"f4 = "; f4.display(); return 0; } 要求: (1)完成所有成员函数,并用上述主函数验证是否达到设计要求,理解为何将约分函 数 reduction()和通分函数 makeCommond(fraction)设计为分数类的私有成员函数而非公 有成员; (2)自行编写约分函数 reduction()和通分函数 makeCommond(fraction),可自己设计, 也可参考其它资料。

二、程序填空题。在程序中序号所标志的位置补充代码,使程序能够满足功能说明的要求。将补充的代码填在回答区域所对应的序号处,然后截取运行截图。 下面代码实现分数的程序。 #pragma once #include <iostream> #include <stdio.h> using namespace std; int gcd(int a,int b); //求公约数函数 class fraction { int top; //分子 int bottom; //分母 public: fraction() { top = 0; bottom = 1; } //默认构造函数 fraction(int t,int b){top=t;bottom=b;} //一般构造函数 ( )//① 分数的加法 { top = top * f.bottom + bottom * f.top; bottom = bottom * f.bottom; int a = gcd(top, bottom); top = top / a; bottom = bottom / a; return *this; } int get_top() { ( ) //② 读取分子的值 } int get_bottom(){return bottom;} void set_top(int t){top=t;} void set_bottom(int b){bottom=b;} // 友元函数、分数减法 friend fraction operator-(const fraction& f1,const fraction& f2); friend ostream& operator<<(ostream& ostr,const fraction& cs); //输出 }; fraction operator-(const fraction& f1,const fraction& f2) { fraction f3; f3.top=f1.top*f2.bottom-f1.bottom*f2.top; f3.bottom=f1.bottom*f2.bottom; int a=gcd(f3.top,f3.bottom); f3.top=f3.top/a; f3.bottom=f3.bottom/a; ( ) //③ 返回计算结果 } ostream& operator<<(ostream& ostr,const fraction& cs) { ostr<<cs.top<<"/"<<cs.bottom; return ostr; } ( ) //④一般函数实现乘法,形参为f1,f2 { fraction f3; f3.set_top(f1.get_top()*f2.get_top()); f3.set_bottom(f1.get_bottom()*f2.get_bottom()); int a=gcd(f3.get_top(),f3.get_bottom()); f3.set_top(f3.get_top()/a); f3.set_bottom(f3.get_bottom()/a); return f3; } int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } //main.cpp #include "fraction.h" int main() { fraction f1(1,3); fraction f2(1,6); fraction f3; f3=f1+f2; cout<<f3<<endl; fraction f4(1,2); f3=f4-f2; cout<<f3<<endl; f3=f4*f2; cout<<f3<<endl; }

最新推荐

recommend-type

16-17 数据挖掘算法基础 - 分类与回归1(1).ipynb

16-17 数据挖掘算法基础 - 分类与回归1(1).ipynb
recommend-type

精选微信小程序源码:停车场管理小程序(含源码+源码导入视频教程&文档教程,亲测可用)

微信小程序是一种轻量级的应用开发平台,由腾讯公司推出,主要应用于移动端,为用户提供便捷的服务。奥多停车小程序源码是一套完整的解决方案,用于构建停车场管理类的小程序应用。这套源码包括了前端用户界面、后端服务器逻辑以及数据库交互等关键组成部分,使得开发者能够快速搭建一个功能齐全的停车服务系统。 1. **微信小程序开发环境**:在开发微信小程序前,首先需要安装微信开发者工具,这是一个集成了代码编辑、预览、调试和发布功能的平台,支持开发者进行小程序的开发工作。 2. **源码结构分析**:源码通常包含多个文件夹,如`pages`用于存放各个页面的代码,`utils`存储公共函数,`app.js`是小程序的全局配置,`app.json`定义项目配置,`app.wxss`是全局样式文件。开发者需要理解每个文件夹和文件的作用,以便进行定制化开发。 3. **奥多停车核心功能**:该小程序可能具备的功能包括但不限于实时车位查询、预约停车位、导航指引、在线支付停车费、电子发票开具等。这些功能的实现依赖于与后端服务器的数据交互,通过API接口进行数据的增删查改。 4. **数据库设计**:数据库
recommend-type

最新闪客网盘系统源码支持限速+按时收费+文件分享+可对接易支付

闪客网盘系统源码支持限速+按时收费+文件分享+可对接易支付 安装所需环境:Nginx 1.20+PHP 7.1-7.3+MySQL 5.6 特色功能: 支持多个服务器部署,支持阿里云、腾讯云oss。大文件分片上传 设置下载限速管理、用户组管理、存储策略管理、文件回收站 默认对接易支付接口、用户提现管理、文件举报管理、找回密码邮件发送、用户文件收益走势图 用户文件收益走势图 三套首页模板随意切换默认是仿蓝奏云模板 VIP 功能等 PS:为了你的安全考虑,搭建好请尽快在后台里更改密码。进入到数据库sk_users里可修改登录用户名
recommend-type

C语言数组操作:高度检查器编程实践

资源摘要信息: "C语言编程题之数组操作高度检查器" C语言是一种广泛使用的编程语言,它以其强大的功能和对低级操作的控制而闻名。数组是C语言中一种基本的数据结构,用于存储相同类型数据的集合。数组操作包括创建、初始化、访问和修改元素以及数组的其他高级操作,如排序、搜索和删除。本资源名为“c语言编程题之数组操作高度检查器.zip”,它很可能是一个围绕数组操作的编程实践,具体而言是设计一个程序来检查数组中元素的高度。在这个上下文中,“高度”可能是对数组中元素值的一个比喻,或者特定于某个应用场景下的一个术语。 知识点1:C语言基础 C语言编程题之数组操作高度检查器涉及到了C语言的基础知识点。它要求学习者对C语言的数据类型、变量声明、表达式、控制结构(如if、else、switch、循环控制等)有清晰的理解。此外,还需要掌握C语言的标准库函数使用,这些函数是处理数组和其他数据结构不可或缺的部分。 知识点2:数组的基本概念 数组是C语言中用于存储多个相同类型数据的结构。它提供了通过索引来访问和修改各个元素的方式。数组的大小在声明时固定,之后不可更改。理解数组的这些基本特性对于编写有效的数组操作程序至关重要。 知识点3:数组的创建与初始化 在C语言中,创建数组时需要指定数组的类型和大小。例如,创建一个整型数组可以使用int arr[10];语句。数组初始化可以在声明时进行,也可以在之后使用循环或单独的赋值语句进行。初始化对于定义检查器程序的初始状态非常重要。 知识点4:数组元素的访问与修改 通过使用数组索引(下标),可以访问数组中特定位置的元素。在C语言中,数组索引从0开始。修改数组元素则涉及到了将新值赋给特定索引位置的操作。在编写数组操作程序时,需要频繁地使用这些操作来实现功能。 知识点5:数组高级操作 除了基本的访问和修改之外,数组的高级操作包括排序、搜索和删除。这些操作在很多实际应用中都有广泛用途。例如,检查器程序可能需要对数组中的元素进行排序,以便于进行高度检查。搜索功能用于查找特定值的元素,而删除操作则用于移除数组中的元素。 知识点6:编程实践与问题解决 标题中提到的“高度检查器”暗示了一个具体的应用场景,可能涉及到对数组中元素的某种度量或标准进行判断。编写这样的程序不仅需要对数组操作有深入的理解,还需要将这些操作应用于解决实际问题。这要求编程者具备良好的逻辑思维能力和问题分析能力。 总结:本资源"c语言编程题之数组操作高度检查器.zip"是一个关于C语言数组操作的实际应用示例,它结合了编程实践和问题解决的综合知识点。通过实现一个针对数组元素“高度”检查的程序,学习者可以加深对数组基础、数组操作以及C语言编程技巧的理解。这种类型的编程题目对于提高编程能力和逻辑思维能力都有显著的帮助。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧

![【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧](https://giecdn.blob.core.windows.net/fileuploads/image/2022/11/17/kuka-visual-robot-guide.jpg) 参考资源链接:[KUKA机器人系统变量手册(KSS 8.6 中文版):深入解析与应用](https://wenku.csdn.net/doc/p36po06uv7?spm=1055.2635.3001.10343) # 1. KUKA系统变量的理论基础 ## 理解系统变量的基本概念 KUKA系统变量是机器人控制系统中的一个核心概念,它允许
recommend-type

如何使用Python编程语言创建一个具有动态爱心图案作为背景并添加文字'天天开心(高级版)'的图形界面?

要在Python中创建一个带动态爱心图案和文字的图形界面,可以结合使用Tkinter库(用于窗口和基本GUI元素)以及PIL(Python Imaging Library)处理图像。这里是一个简化的例子,假设你已经安装了这两个库: 首先,安装必要的库: ```bash pip install tk pip install pillow ``` 然后,你可以尝试这个高级版的Python代码: ```python import tkinter as tk from PIL import Image, ImageTk def draw_heart(canvas): heart = I
recommend-type

基于Swift开发的嘉定单车LBS iOS应用项目解析

资源摘要信息:"嘉定单车汇(IOS app).zip" 从标题和描述中,我们可以得知这个压缩包文件包含的是一套基于iOS平台的移动应用程序的开发成果。这个应用是由一群来自同济大学软件工程专业的学生完成的,其核心功能是利用位置服务(LBS)技术,面向iOS用户开发的单车共享服务应用。接下来将详细介绍所涉及的关键知识点。 首先,提到的iOS平台意味着应用是为苹果公司的移动设备如iPhone、iPad等设计和开发的。iOS是苹果公司专有的操作系统,与之相对应的是Android系统,另一个主要的移动操作系统平台。iOS应用通常是用Swift语言或Objective-C(OC)编写的,这在标签中也得到了印证。 Swift是苹果公司在2014年推出的一种新的编程语言,用于开发iOS和macOS应用程序。Swift的设计目标是与Objective-C并存,并最终取代后者。Swift语言拥有现代编程语言的特性,包括类型安全、内存安全、简化的语法和强大的表达能力。因此,如果一个项目是使用Swift开发的,那么它应该会利用到这些特性。 Objective-C是苹果公司早前主要的编程语言,用于开发iOS和macOS应用程序。尽管Swift现在是主要的开发语言,但仍然有许多现存项目和开发者在使用Objective-C。Objective-C语言集成了C语言与Smalltalk风格的消息传递机制,因此它通常被认为是一种面向对象的编程语言。 LBS(Location-Based Services,位置服务)是基于位置信息的服务。LBS可以用来为用户提供地理定位相关的信息服务,例如导航、社交网络签到、交通信息、天气预报等。本项目中的LBS功能可能包括定位用户位置、查找附近的单车、计算骑行路线等功能。 从文件名称列表来看,包含的三个文件分别是: 1. ios期末项目文档.docx:这份文档可能是对整个iOS项目的设计思路、开发过程、实现的功能以及遇到的问题和解决方案等进行的详细描述。对于理解项目的背景、目标和实施细节至关重要。 2. 移动应用开发项目期末答辩.pptx:这份PPT文件应该是为项目答辩准备的演示文稿,里面可能包括项目的概览、核心功能演示、项目亮点以及团队成员介绍等。这可以作为了解项目的一个快速入门方式,尤其是对项目的核心价值和技术难点有直观的认识。 3. LBS-ofo期末项目源码.zip:这是项目的源代码压缩包,包含了完成单车汇项目所需的全部Swift或Objective-C代码。源码对于理解项目背后的逻辑和实现细节至关重要,同时也是评估项目质量、学习最佳实践、复用或扩展功能的基础。 综合上述信息,"嘉定单车汇(IOS app).zip"不仅仅是一个应用程序的压缩包,它还代表了一个团队在软件工程项目中的完整工作流程,包含了项目文档、演示材料和实际编码,为学习和评估提供了一个很好的案例。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

PROTEUS符号定制指南:个性化元件创建与修改的全面攻略

![PROTEUS符号定制指南:个性化元件创建与修改的全面攻略](https://circuits-diy.com/wp-content/uploads/2020/05/74LS00-pinout.png) 参考资源链接:[Proteus电子元件符号大全:从二极管到场效应管](https://wenku.csdn.net/doc/1fahxsg8um?spm=1055.2635.3001.10343) # 1. PROTEUS符号定制基础知识 PROTEUS符号定制是电子工程设计中不可或缺的一环,它允许设计者创建和修改电路元件符号,以符合特定的设计需求。本章将为你提供关于PROTEUS符号