1、求微分方程的解析解、并使用MATLAB画出它们的图形 (1)y(4)=y,y(0)=y’(0)=2,y”(0)=y””(0)=1
时间: 2023-07-14 09:11:51 浏览: 213
这是一个四阶常微分方程,可以写成特征方程:
r^4 - 1 = 0
解得:
r = ±1, ±i
因此通解为:
y(t) = c1*e^t + c2*e^(-t) + c3*cos(t) + c4*sin(t)
带入初始条件:
y(0) = c1 + c2 + c3 = 0
y'(0) = c1 - c2 + c4 = 2
y''(0) = c3 + c4 = 1
y'''(0) = -c3 + c4 = 0
解得:
c1 = c2 = c3 = 0, c4 = 1
因此特解为:
y(t) = e^t - e^(-t) + sin(t)
MATLAB代码如下:
syms y(t)
ode = diff(y, t, 4) == y;
cond1 = y(0) == 2;
cond2 = diff(y)(0) == 2;
cond3 = diff(y, t, 2)(0) == 1;
cond4 = diff(y, t, 3)(0) == 1;
conds = [cond1 cond2 cond3 cond4];
ySol(t) = dsolve(ode, conds);
fplot(ySol,[-10,10])
相关问题
求微分方程的解析解、并使用MATLAB画出它们的图形:y''''=y,y(0)=y'(0)=2,y''(0)=y'''(0)=1
首先,我们可以把这个四阶微分方程转化为一个一阶微分方程组:
令y1=y,y2=y',y3=y'',y4=y''',
则原方程变为:
y4=y1
y1(0)=2,y2(0)=1,y3(0)=1,y4(0)=1
于是得到一阶微分方程组:
y1'=y2
y2'=y3
y3'=y4
y4'=y1
并且初始条件为:
y1(0)=2,y2(0)=1,y3(0)=1,y4(0)=1
解这个一阶微分方程组,得到:
y1(t) = (1/2)*(2*cos(t)+2*sin(t)+exp(t)-cos(t)-sin(t)-exp(-t))
y2(t) = (1/2)*(2*cos(t)-2*sin(t)+exp(t)+cos(t)-sin(t)-exp(-t))
y3(t) = (1/2)*(-2*cos(t)-2*sin(t)+exp(t)+cos(t)+sin(t)-exp(-t))
y4(t) = (1/2)*(-2*cos(t)+2*sin(t)+exp(t)-cos(t)+sin(t)-exp(-t))
使用MATLAB画出它们的图形:
```matlab
t = linspace(0, 10*pi, 1000);
y1 = (1/2)*(2*cos(t)+2*sin(t)+exp(t)-cos(t)-sin(t)-exp(-t));
y2 = (1/2)*(2*cos(t)-2*sin(t)+exp(t)+cos(t)-sin(t)-exp(-t));
y3 = (1/2)*(-2*cos(t)-2*sin(t)+exp(t)+cos(t)+sin(t)-exp(-t));
y4 = (1/2)*(-2*cos(t)+2*sin(t)+exp(t)-cos(t)+sin(t)-exp(-t));
plot(t, y1, 'r', t, y2, 'g', t, y3, 'b', t, y4, 'm');
legend('y1', 'y2', 'y3', 'y4');
xlabel('t');
ylabel('y');
title("y''''=y, y(0)=2, y'(0)=1, y''(0)=1, y'''(0)=1");
```
运行结果如下图所示:

1.求微分方程的解析解, 并画出它们的图形, y’= y + 2x, y(0) = 1, 0<x<1; matlab
求解微分方程 \(y' = y + 2x\) 的解析解,并画出在区间 \(0 < x < 1\) 上初始条件 \(y(0) = 1\) 的图,可以使用数学分析的方法结合Matlab软件来完成。这个一阶线性非齐次微分方程的通解形式通常是 \(y = C e^x + \int{e^x (2x)} dx\),其中 \(C\) 是积分常数。
首先,我们可以找到齐次解 \(y_h = Ce^x\),然后利用待定系数法确定非齐次项 \(2x\) 的特解 \(y_p\)。特解的一般形式可能是 \(Ax + B\),代入原方程解得 \(A = 2\) 和 \(B = -1\),所以特解是 \(y_p = 2x - 1\)。
因此,整个解是 \(y = Ce^x + 2x - 1\)。给定初始条件 \(y(0) = 1\),我们可以求出 \(C\) 的值:
\[1 = C * e^{0} + 2*0 - 1\]
\[1 = C\]
现在我们有了具体的解 \(y(x) = x + 1\)。
在Matlab中,你可以通过下面的步骤来绘制这个函数:
1. 定义变量范围和计算对应的y值:
```matlab
x = linspace(0, 1); % 创建x的向量
y = x + 1; % 计算对应于每个x的y值
% 画图
plot(x, y);
xlabel('x');
ylabel('y');
title('y'' = y + 2x 解析解');
```
运行这段代码,你会得到曲线 \(y(x)\) 在指定区间的图形。
阅读全文
相关推荐













