python对数据进行平滑变为函数型数据,计算这些函数型数据的马氏距离,并对K-means聚类中通过欧式距离进行聚类的方法进行优化,优化为基于这些函数型数据的马氏距离对这些函数型数据进行聚类,并给我代码
时间: 2024-02-28 20:54:21 浏览: 126
以下是 Python 代码实现:
```python
import numpy as np
from scipy.spatial.distance import cdist
from scipy.linalg import inv
from sklearn.cluster import KMeans
# 平滑函数
def smooth(x, window_len=11, window='hanning'):
if x.ndim != 1:
raise ValueError("smooth only accepts 1 dimension arrays.")
if x.size < window_len:
raise ValueError("Input vector needs to be bigger than window size.")
if window_len < 3:
return x
if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']:
raise ValueError("Window is one of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'")
s = np.r_[x[window_len - 1:0:-1], x, x[-2:-window_len - 1:-1]]
if window == 'flat': # moving average
w = np.ones(window_len, 'd')
else:
w = eval('np.'+window+'(window_len)')
y = np.convolve(w / w.sum(), s, mode='valid')
return y[int(window_len / 2):-int(window_len / 2)]
# 计算马氏距离
def mahalanobis(x, y, invcov):
diff = x - y
return np.sqrt(np.dot(np.dot(diff, invcov), diff.T))
# 读取数据,假设数据已经被平滑处理为函数型数据
data = np.loadtxt('data.txt')
# 计算协方差矩阵的逆矩阵
cov = np.cov(data.T)
invcov = inv(cov)
# 计算马氏距离矩阵
dist = cdist(data, data, mahalanobis, invcov=invcov)
# 使用 K-Means 聚类算法,基于马氏距离进行聚类
kmeans = KMeans(n_clusters=3, init='k-means++', max_iter=300, n_init=10, random_state=0)
labels = kmeans.fit_predict(dist)
# 输出聚类结果
print(labels)
```
需要注意的是,这里的 `data.txt` 文件应该是已经被平滑处理为函数型数据的,即每一行代表一个函数型数据。如果数据还没有进行平滑处理,则需要先进行平滑处理,然后再使用上述代码进行聚类。
阅读全文