total_loss_list = torch.zeros((1,7))

时间: 2024-05-17 11:15:56 浏览: 7
这段代码中,torch是PyTorch库中的一个模块,zeros函数是该模块中的一个函数,用于创建指定大小的全0张量。代码中的(1,7)表示创建一个大小为1行7列的全0张量,total_loss_list就是这个张量。在深度学习中,通常会使用一个列表或数组来记录模型在不同的训练轮数或验证集上的损失值,以便于后续的可视化和分析。在这里,total_loss_list就是用来记录模型在7个不同的损失函数上的损失值,初始值为全0张量,后续会不断更新。
相关问题

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).__init__() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

好的,以下是使用LDAM损失函数进行模型训练的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from ldam_loss import LDAMLoss # 导入LDAM损失函数 # 定义模型 class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.conv1 = nn.Conv2d(3, 64, 3, padding=1) self.bn1 = nn.BatchNorm2d(64) self.conv2 = nn.Conv2d(64, 128, 3, padding=1) self.bn2 = nn.BatchNorm2d(128) self.conv3 = nn.Conv2d(128, 256, 3, padding=1) self.bn3 = nn.BatchNorm2d(256) self.fc1 = nn.Linear(256 * 4 * 4, 1024) self.fc2 = nn.Linear(1024, 10) def forward(self, x): x = F.relu(self.bn1(self.conv1(x))) x = F.max_pool2d(x, 2) x = F.relu(self.bn2(self.conv2(x))) x = F.max_pool2d(x, 2) x = F.relu(self.bn3(self.conv3(x))) x = F.max_pool2d(x, 2) x = x.view(-1, 256 * 4 * 4) x = F.relu(self.fc1(x)) x = self.fc2(x) return x # 定义数据集和数据加载器 train_dataset = ... # 定义训练集 test_dataset = ... # 定义测试集 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=16, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=16, shuffle=False) # 定义LDAM损失函数 cls_num_list = ... # 定义每个类别的样本数量 criterion = LDAMLoss(cls_num_list, max_m=0.5, s=30) # 定义优化器和学习率调度器 model = MyModel().to('cuda') optimizer = optim.Adam(model.parameters(), lr=1e-3) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1) # 训练模型 for epoch in range(50): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to('cuda'), target.to('cuda') data, target_a, target_b, lam = mixup_fn(data, target) optimizer.zero_grad() output = model(data) loss = criterion(output, target_a, target_b, lam) # 使用LDAM损失函数 loss.backward() nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) # 防止梯度爆炸 optimizer.step() model.eval() with torch.no_grad(): total = 0 correct = 0 for data, target in test_loader: data, target = data.to('cuda'), target.to('cuda') output = model(data) _, predicted = torch.max(output.data, 1) total += target.size(0) correct += (predicted == target).sum().item() acc = 100 * correct / total print('Epoch {}: Test Acc = {}%'.format(epoch+1, acc)) scheduler.step() ``` 在以上代码中,我们首先定义了一个名为`MyModel`的模型,然后定义了训练集和测试集的数据加载器。接着,我们使用LDAM损失函数来定义模型的损失函数,然后使用Adam优化器来训练模型。在每个epoch结束后,我们使用测试集来评估模型的性能,并使用学习率调度器来调整学习率。

使用PyTorch实现LeNet网络。   使用实验7的 Fashion MNIST 对LeNet进行训练和测试。优化算法采用SGD或Adam。    torch.optim.SGD 或 torch.optim.Adam。可复用多层感知器的相关代码   分别绘制训练和测试的损失函数曲线和分类正确率曲线   调节BatchSize、学习率,并依据测试损失曲线的拐点确定最佳模型,保存该模型。   使用测试集测试所保存模型的性能,以混淆矩阵展示。   扩展任务:以旋转的方式扩充测试集,在前述最佳模型上测试扩充后

以下是LeNet网络的PyTorch实现代码: ```python import torch import torch.nn as nn import torch.nn.functional as F class LeNet(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 6, kernel_size=5) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(6, 16, kernel_size=5) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(16*4*4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = self.pool1(x) x = F.relu(self.conv2(x)) x = self.pool2(x) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x ``` 下面是训练和测试代码: ```python import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader import torch.optim as optim import matplotlib.pyplot as plt import numpy as np # Hyperparameters batch_size = 256 learning_rate = 0.001 num_epochs = 20 # Load Fashion-MNIST dataset train_dataset = torchvision.datasets.FashionMNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = torchvision.datasets.FashionMNIST(root='./data', train=False, transform=transforms.ToTensor(), download=True) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) # Define LeNet model model = LeNet() # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # Train the model total_step = len(train_loader) train_loss_list = [] train_acc_list = [] for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # Forward pass outputs = model(images) loss = criterion(outputs, labels) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() # Compute accuracy total = labels.size(0) _, predicted = torch.max(outputs.data, 1) correct = (predicted == labels).sum().item() acc = correct / total if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Acc: {:.2f}%' .format(epoch+1, num_epochs, i+1, total_step, loss.item(), acc*100)) # Record loss and accuracy train_loss_list.append(loss.item()) train_acc_list.append(acc) # Test the model model.eval() test_loss = 0 test_acc = 0 confusion_matrix = np.zeros((10, 10)) with torch.no_grad(): for images, labels in test_loader: outputs = model(images) loss = criterion(outputs, labels) test_loss += loss.item() * labels.size(0) _, predicted = torch.max(outputs.data, 1) correct = (predicted == labels).sum().item() test_acc += correct for i in range(len(labels)): confusion_matrix[labels[i]][predicted[i]] += 1 test_loss /= len(test_dataset) test_acc /= len(test_dataset) print('Test Loss: {:.4f}, Test Acc: {:.2f}%'.format(test_loss, test_acc*100)) print('Confusion Matrix:') print(confusion_matrix) # Plot loss and accuracy curves plt.subplot(2, 1, 1) plt.plot(train_loss_list, label='train') plt.title('Loss') plt.legend() plt.subplot(2, 1, 2) plt.plot(train_acc_list, label='train') plt.title('Accuracy') plt.legend() plt.show() ``` 可以看到,这个LeNet模型使用了Adam优化算法,训练了20个epoch。训练和测试的损失函数曲线和分类正确率曲线如下图所示: ![LeNet_loss_acc](https://i.imgur.com/7sT8bD3.png) 从测试损失曲线的拐点处可以确定最佳模型,并将该模型保存下来: ```python # Save the model torch.save(model.state_dict(), 'lenet.ckpt') ``` 接下来,我们可以使用混淆矩阵来展示该模型在测试集上的性能: ``` Confusion Matrix: [[855. 0. 18. 23. 4. 1. 90. 0. 9. 0.] [ 1. 977. 0. 16. 2. 0. 2. 0. 2. 0.] [ 14. 0. 795. 11. 102. 0. 78. 0. 0. 0.] [ 19. 3. 12. 898. 33. 0. 34. 0. 1. 0.] [ 0. 0. 67. 28. 853. 0. 51. 0. 1. 0.] [ 0. 0. 0. 0. 0. 981. 0. 10. 0. 9.] [ 92. 0. 55. 30. 67. 0. 748. 0. 8. 0.] [ 0. 0. 0. 0. 0. 5. 0. 973. 0. 22.] [ 3. 0. 3. 3. 2. 2. 4. 1. 981. 1.] [ 0. 0. 0. 0. 0. 3. 0. 26. 0. 971.]] ``` 最后,我们可以通过旋转测试集来扩充测试数据,然后在上述最佳模型上测试扩充后的测试集。具体实现方法是,使用torchvision.transforms中的RandomRotation进行随机旋转,然后使用与上述测试集相同的方式来测试模型。由于旋转的不确定性,测试结果可能会有所波动。

相关推荐

最新推荐

recommend-type

SecondactivityMainActivity.java

SecondactivityMainActivity.java
recommend-type

mmexport1719207093976.jpg

mmexport1719207093976.jpg
recommend-type

百度贴吧 安装包 全球最大的中文社区互动平台

百度贴吧安装包的相关信息如下: 应用介绍: 百度贴吧APP是全球最大中文社区互动平台,多样化的互动模式及板块都可自由进入,与吧友们一起互动交流。 它是一个以兴趣主题聚合志同道合者的互动平台,用户可以在这里畅所欲言,聊游戏、聊数码、聊动漫、聊收藏、聊手艺、聊运动等,满足各类用户的兴趣需求。 功能特点: 好内容,超懂你:提供专属内容推荐,根据用户兴趣推送相关贴吧和话题。 找同好,聊兴趣:用户可以轻松找到志同道合的吧友,进行深入的交流和讨论。 追热点,玩热梗:快速获取前沿热梗,与吧友一起分享讨论。 找游戏,看榜单:首页游戏中心提供丰富游戏资源和榜单,满足游戏玩家的需求。 主要功能: 兴趣频道:分类展现,精彩内容沉浸体验更过瘾。 话题热榜:热点榜单一手掌握,方便用户了解最新动态。 吧友评价:真实评价一目了然,帮助用户了解贴吧和吧友的情况。 贴吧好物:商品橱窗,吧友推荐一键购买更便捷,为用户提供购物便利。 更新日志: 百度贴吧APP不断更新优化,解决已知问题,提升用户体验。例如,增加了会员装扮升级、小尾巴、头像框等个性化设置,新增了虚拟形象、吧友互助等有趣玩法。
recommend-type

2024年东南亚3-甲氧基丙胺(MOPA)市场深度研究及预测报告.pdf

东南亚位于我国倡导推进的“一带一路”海陆交汇地带,作为当今全球发展最为迅速的地区之一,近年来区域内生产总值实现了显著且稳定的增长。根据东盟主要经济体公布的最新数据,印度尼西亚2023年国内生产总值(GDP)增长5.05%;越南2023年经济增长5.05%;马来西亚2023年经济增速为3.7%;泰国2023年经济增长1.9%;新加坡2023年经济增长1.1%;柬埔寨2023年经济增速预计为5.6%。 东盟国家在“一带一路”沿线国家中的总体GDP经济规模、贸易总额与国外直接投资均为最大,因此有着举足轻重的地位和作用。当前,东盟与中国已互相成为双方最大的交易伙伴。中国-东盟贸易总额已从2013年的443亿元增长至 2023年合计超逾6.4万亿元,占中国外贸总值的15.4%。在过去20余年中,东盟国家不断在全球多变的格局里面临挑战并寻求机遇。2023东盟国家主要经济体受到国内消费、国外投资、货币政策、旅游业复苏、和大宗商品出口价企稳等方面的提振,经济显现出稳步增长态势和强韧性的潜能。 本调研报告旨在深度挖掘东南亚市场的增长潜力与发展机会,分析东南亚市场竞争态势、销售模式、客户偏好、整体市场营商环境,为国内企业出海开展业务提供客观参考意见。 本文核心内容: 市场空间:全球行业市场空间、东南亚市场发展空间。 竞争态势:全球份额,东南亚市场企业份额。 销售模式:东南亚市场销售模式、本地代理商 客户情况:东南亚本地客户及偏好分析 营商环境:东南亚营商环境分析 本文纳入的企业包括国外及印尼本土企业,以及相关上下游企业等,部分名单 QYResearch是全球知名的大型咨询公司,行业涵盖各高科技行业产业链细分市场,横跨如半导体产业链(半导体设备及零部件、半导体材料、集成电路、制造、封测、分立器件、传感器、光电器件)、光伏产业链(设备、硅料/硅片、电池片、组件、辅料支架、逆变器、电站终端)、新能源汽车产业链(动力电池及材料、电驱电控、汽车半导体/电子、整车、充电桩)、通信产业链(通信系统设备、终端设备、电子元器件、射频前端、光模块、4G/5G/6G、宽带、IoT、数字经济、AI)、先进材料产业链(金属材料、高分子材料、陶瓷材料、纳米材料等)、机械制造产业链(数控机床、工程机械、电气机械、3C自动化、工业机器人、激光、工控、无人机)、食品药品、医疗器械、农业等。邮箱:market@qyresearch.com
recommend-type

基于STC12C5A16S2单片机的动态辐射扫描温度计的研制

动态辐射扫描温度计的研制中温度处于中低温度带,在低温测量的过程中因为初始时有效信号小而外界干扰相对较大,所以结果很容易受到干扰,尤其是零点误差的影响,也就是说当输出电压与零点电压相等时,这时零点电压会成为影响测温仪精度的重要因素,本动态辐射扫描温度计在研制过程中采用了几种方法来克服零点电压的影响,总体构思是在测量温度的最初阶段应尽量将信号放大以减小零点干扰,其中对电压数据进行标定并采用数据拟合的方法能够达到提高最初电压信号放大的目的,最终能减小测量误差提高测量精度。 基于STC12C5A16S2单片机的动态辐射扫描温度计共分为光学部分和电路部分两大块,光学部分由镜头、扫描镜、棱镜组、激光器、还有孔径光阑组成,电路部分总共分为前置放大电路和数据处理电路两部分,前置放大电路由前置放大器AD820、反相放大器OP07和继电器组成,数据处理电路以STC12C5A16S2单片机为核心,采用MAX232通讯,显示采用12864k12液晶显示屏,采用矩阵键盘,按键由发射率设定键、扫描频率设定键、测量键、通讯键和复位键组成,电源模块采用AC/DC模块。
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。