python实现将neo4j的知识图谱利用TransH嵌入方法转换成嵌入向量

时间: 2024-03-07 16:49:02 浏览: 21
以下是基于 PyTorch 实现的 TransH 算法,可以将 Neo4j 的知识图谱转换成嵌入向量: ```python import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from torch.autograd import Variable from tqdm import tqdm from py2neo import Graph # 定义 TransH 模型 class TransH(nn.Module): def __init__(self, entity_num, relation_num, dim, margin=1.0): super(TransH, self).__init__() self.entity_num = entity_num self.relation_num = relation_num self.dim = dim self.margin = margin # 定义实体、关系、映射矩阵 self.entity_embeddings = nn.Embedding(entity_num, dim) self.relation_embeddings = nn.Embedding(relation_num, dim) self.projection_matrix = nn.Embedding(relation_num, dim * dim) def forward(self, head, relation, tail): # 获取实体、关系、映射矩阵的向量表示 head_emb = self.entity_embeddings(head) relation_emb = self.relation_embeddings(relation) tail_emb = self.entity_embeddings(tail) proj_mat = self.projection_matrix(relation) # 将向量表示转换成矩阵表示 head_mat = head_emb.view(-1, 1, self.dim) tail_mat = tail_emb.view(-1, 1, self.dim) proj_mat = proj_mat.view(-1, self.dim, self.dim) # 计算 TransH 中的映射向量 head_proj_mat = torch.matmul(head_mat, proj_mat) tail_proj_mat = torch.matmul(tail_mat, proj_mat) head_proj_vec = head_proj_mat.view(-1, self.dim) tail_proj_vec = tail_proj_mat.view(-1, self.dim) # 计算 TransH 中的距离函数 dist = torch.norm(head_proj_vec + relation_emb - tail_proj_vec, p=2, dim=1) return dist # 定义 TransH 中的 margin loss def margin_loss(self, pos_dist, neg_dist): loss = torch.sum(torch.max(pos_dist - neg_dist + self.margin, torch.zeros_like(pos_dist))) return loss # 定义训练函数 def train(model, train_data, optimizer, batch_size, margin): # 将数据集分成若干个 batch batch_num = (len(train_data) - 1) // batch_size + 1 np.random.shuffle(train_data) total_loss = 0.0 for i in tqdm(range(batch_num)): start_idx = i * batch_size end_idx = min((i + 1) * batch_size, len(train_data)) batch_data = train_data[start_idx:end_idx] head = torch.LongTensor(batch_data[:, 0]) relation = torch.LongTensor(batch_data[:, 1]) tail = torch.LongTensor(batch_data[:, 2]) neg_head = torch.LongTensor(batch_data[:, 3]) neg_tail = torch.LongTensor(batch_data[:, 4]) # 将数据转移到 GPU 上 if torch.cuda.is_available(): model.cuda() head = head.cuda() relation = relation.cuda() tail = tail.cuda() neg_head = neg_head.cuda() neg_tail = neg_tail.cuda() # 计算正样本和负样本的距离 pos_dist = model(head, relation, tail) neg_dist = model(neg_head, relation, neg_tail) # 计算 margin loss 并进行反向传播 loss = model.margin_loss(pos_dist, neg_dist) optimizer.zero_grad() loss.backward() optimizer.step() total_loss += loss.data.cpu().numpy() return total_loss / batch_num # 定义 TransH 算法的训练过程 def transh_train(entity_list, relation_list, triple_list, dim, lr=0.001, margin=1.0, batch_size=1024, epoch=100): # 初始化模型和优化器 entity2id = {entity: idx for idx, entity in enumerate(entity_list)} relation2id = {relation: idx for idx, relation in enumerate(relation_list)} model = TransH(len(entity2id), len(relation2id), dim, margin=margin) optimizer = torch.optim.Adam(model.parameters(), lr=lr) # 将三元组转换成训练数据 train_data = [] for head, relation, tail in triple_list: if head not in entity2id or tail not in entity2id or relation not in relation2id: continue head_id = entity2id[head] tail_id = entity2id[tail] relation_id = relation2id[relation] train_data.append([head_id, relation_id, tail_id]) # 开始训练 for i in range(epoch): loss = train(model, train_data, optimizer, batch_size, margin) print("Epoch %d: loss=%.4f" % (i + 1, loss)) # 返回实体的嵌入向量 entity_embeddings = model.entity_embeddings.weight.data.cpu().numpy() return entity_embeddings # 连接 Neo4j 数据库并查询数据 graph = Graph(host="localhost", http_port=7474, user="neo4j", password="password") result = graph.run("MATCH (n)-[r]->(m) RETURN n.name, r.name, m.name").data() # 提取实体、关系和三元组列表 entity_list = list(set([item['n.name'] for item in result] + [item['m.name'] for item in result])) relation_list = list(set([item['r.name'] for item in result])) triple_list = [[item['n.name'], item['r.name'], item['m.name']] for item in result] # 使用 TransH 算法将知识图谱转换成嵌入向量 entity_embeddings = transh_train(entity_list, relation_list, triple_list, dim=50, lr=0.01, margin=1.0, batch_size=1024, epoch=100) # 保存实体嵌入向量 np.savetxt("entity_embeddings.txt", entity_embeddings, delimiter=",") ``` 其中,`TransH` 类定义了 TransH 模型,包括实体嵌入矩阵、关系嵌入矩阵和映射矩阵,并实现了前向传播和 margin loss 函数。`train` 函数定义了模型的训练过程,包括将数据集分成若干个 batch,计算正负样本的距离和 margin loss,并进行反向传播。`transh_train` 函数定义了 TransH 算法的训练过程,包括将三元组转换成训练数据,初始化模型和优化器,并开始训练。最后将实体嵌入矩阵保存到文件中。 你需要根据自己的数据集和需求,修改代码中的参数和超参数,例如嵌入维度、学习率、margin、batch_size 和 epoch 等。

相关推荐

最新推荐

recommend-type

Python使用py2neo操作图数据库neo4j的方法详解

主要介绍了Python使用py2neo操作图数据库neo4j的方法,结合实例形式详细分析了Python使用py2neo操作图数据库neo4j的具体步骤、原理、相关使用技巧与操作注意事项,需要的朋友可以参考下
recommend-type

如何在网页前端里可视化你的知识图谱

最近费尽千辛万苦构造了一份可以用(大概)的知识图谱,并且把要利用知识图谱做的领域命名实体识别和一些推荐的功能做成Web版的demo,顺带想实现一些可视化知识图谱的功能。 (凭啥知识图谱就只能在Neo4j里自嗨,不...
recommend-type

Java swing + socket + mysql 五子棋网络对战游戏FiveChess.zip

五子棋游戏想必大家都非常熟悉,游戏规则十分简单。游戏开始后,玩家在游戏设置中选择人机对战,则系统执黑棋,玩家自己执白棋。双方轮流下一棋,先将横、竖或斜线的5个或5个以上同色棋子连成不间断的一排者为胜。 【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【技术】 Java、Python、Node.js、Spring Boot、Django、Express、MySQL、PostgreSQL、MongoDB、React、Angular、Vue、Bootstrap、Material-UI、Redis、Docker、Kubernetes
recommend-type

纯C语言实现的控制台有禁手五子棋(带AI)Five-to-five-Renju.zip

五子棋游戏想必大家都非常熟悉,游戏规则十分简单。游戏开始后,玩家在游戏设置中选择人机对战,则系统执黑棋,玩家自己执白棋。双方轮流下一棋,先将横、竖或斜线的5个或5个以上同色棋子连成不间断的一排者为胜。 【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【技术】 Java、Python、Node.js、Spring Boot、Django、Express、MySQL、PostgreSQL、MongoDB、React、Angular、Vue、Bootstrap、Material-UI、Redis、Docker、Kubernetes
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依