利用Q-Learing动态设置Unet训练的学习率,基于pytorch详细代码实现
时间: 2024-03-20 13:40:38 浏览: 184
基于强化学习的井字棋
好的,以下是基于PyTorch实现利用Q-Learning动态设置Unet训练学习率的详细代码。
首先,我们需要导入相关的PyTorch库和其他必要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
```
接下来,我们需要定义Unet模型。这里我们使用一个简单的Unet模型,仅包含两个卷积层和两个上采样层:
```python
class Unet(nn.Module):
def __init__(self):
super(Unet, self).__init__()
self.conv1 = nn.Conv2d(1, 16, 3, padding=1)
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
self.upconv1 = nn.ConvTranspose2d(32, 16, 2, stride=2)
self.upconv2 = nn.ConvTranspose2d(16, 1, 2, stride=2)
def forward(self, x):
# Encoding
x = self.conv1(x)
x = nn.functional.relu(x)
x = self.conv2(x)
x = nn.functional.relu(x)
# Decoding
x = self.upconv1(x)
x = nn.functional.relu(x)
x = self.upconv2(x)
return x
```
接下来,我们需要定义Q-Learning算法。这里我们使用一个简单的Q-Learning算法,每次根据当前状态和动作计算出Q值,然后根据一定的策略选择下一步的动作:
```python
class QLearning:
def __init__(self, state_size, action_size, learning_rate=0.1, discount_rate=0.99, epsilon=0.1):
self.state_size = state_size
self.action_size = action_size
self.learning_rate = learning_rate
self.discount_rate = discount_rate
self.epsilon = epsilon
self.q_table = np.zeros((state_size, action_size))
def get_action(self, state):
if np.random.rand() < self.epsilon:
return np.random.randint(self.action_size)
else:
return np.argmax(self.q_table[state, :])
def update_q_table(self, state, action, reward, next_state):
old_q_value = self.q_table[state, action]
next_max_q_value = np.max(self.q_table[next_state, :])
new_q_value = (1 - self.learning_rate) * old_q_value + self.learning_rate * (reward + self.discount_rate * next_max_q_value)
self.q_table[state, action] = new_q_value
```
现在,我们可以开始训练Unet模型。在每个epoch结束时,我们将使用Q-Learning算法动态地调整学习率。具体地,我们将当前的模型参数作为状态,将学习率作为动作,将验证集上的准确率作为奖励,然后根据Q-Learning算法更新Q值和选择学习率:
```python
# Define dataset and dataloader
train_set = ...
train_loader = torch.utils.data.DataLoader(train_set, batch_size=32, shuffle=True)
val_set = ...
val_loader = torch.utils.data.DataLoader(val_set, batch_size=32, shuffle=False)
# Define Unet model
model = Unet()
# Define loss function and optimizer
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Define Q-Learning algorithm
state_size = len(list(model.parameters()))
action_size = 10
q_learning = QLearning(state_size, action_size)
# Train the model
for epoch in range(10):
# Train for one epoch
for i, (inputs, targets) in enumerate(train_loader):
# Forward pass
outputs = model(inputs)
loss = criterion(outputs, targets)
# Backward pass and update model parameters
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Evaluate on validation set
with torch.no_grad():
total_correct = 0
total_samples = 0
for inputs, targets in val_loader:
outputs = model(inputs)
predictions = (outputs > 0.5).float()
total_correct += (predictions == targets).sum().item()
total_samples += targets.numel()
accuracy = total_correct / total_samples
# Update learning rate using Q-Learning algorithm
state = np.concatenate([param.data.cpu().numpy().ravel() for param in model.parameters()])
action = q_learning.get_action(state)
lr = 10 ** (-4 - action)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# Update Q-value using Q-Learning algorithm
reward = accuracy
next_state = np.concatenate([param.data.cpu().numpy().ravel() for param in model.parameters()])
q_learning.update_q_table(state, action, reward, next_state)
# Print training progress
print('Epoch {}: loss={:.4f}, accuracy={:.4f}, lr={:.6f}'.format(epoch+1, loss.item(), accuracy, lr))
```
这就是利用Q-Learning动态设置Unet训练学习率的详细代码实现。需要注意的是,这只是一个简单的示例代码,实际应用中可能需要根据具体的问题进行修改。
阅读全文