qt中opencv怎么获取像素点灰度分布并绘制直方图
时间: 2023-08-29 21:05:42 浏览: 289
以下是在Qt中使用OpenCV获取像素点灰度分布并绘制直方图的示例代码:
```c++
#include <opencv2/opencv.hpp>
#include <QImage>
#include <QPixmap>
#include <QLabel>
#include <QVBoxLayout>
#include <QHBoxLayout>
#include <QFileDialog>
#include <QDebug>
using namespace cv;
int main(int argc, char *argv[])
{
QApplication a(argc, argv);
QWidget widget;
QVBoxLayout *layout = new QVBoxLayout(&widget);
// 选择图片
QString fileName = QFileDialog::getOpenFileName(&widget, "Open Image", ".", "Image Files (*.png *.jpg *.bmp)");
if (fileName.isNull()) {
return 0;
}
// 读取图片并转换为灰度图
Mat image = imread(fileName.toStdString());
cvtColor(image, image, CV_BGR2GRAY);
// 计算像素点灰度分布
int histSize = 256;
float range[] = { 0, 256 };
const float* histRange = { range };
bool uniform = true;
bool accumulate = false;
Mat hist;
calcHist(&image, 1, 0, Mat(), hist, 1, &histSize, &histRange, uniform, accumulate);
// 绘制直方图
int histWidth = 512;
int histHeight = 400;
int binWidth = cvRound((double)histWidth / histSize);
Mat histImage(histHeight, histWidth, CV_8UC1, Scalar(255, 255, 255));
normalize(hist, hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
for (int i = 1; i < histSize; i++) {
line(histImage, Point(binWidth * (i - 1), histHeight - cvRound(hist.at<float>(i - 1))),
Point(binWidth * i, histHeight - cvRound(hist.at<float>(i))),
Scalar(0, 0, 0), 2, LINE_AA);
}
// 将结果显示在界面上
QLabel *imageLabel = new QLabel(&widget);
QImage qImage(image.data, image.cols, image.rows, QImage::Format_Grayscale8);
QPixmap pixmap = QPixmap::fromImage(qImage);
imageLabel->setPixmap(pixmap);
QLabel *histLabel = new QLabel(&widget);
QImage qHistImage(histImage.data, histImage.cols, histImage.rows, QImage::Format_Grayscale8);
QPixmap histPixmap = QPixmap::fromImage(qHistImage);
histLabel->setPixmap(histPixmap);
QHBoxLayout *hLayout = new QHBoxLayout();
hLayout->addWidget(imageLabel);
hLayout->addWidget(histLabel);
layout->addLayout(hLayout);
widget.show();
return a.exec();
}
```
该代码首先通过 `cv::imread()` 函数读取指定的图片,并将其转换为灰度图。然后使用 `cv::calcHist()` 函数计算像素点灰度分布。
接下来,代码创建一个 `cv::Mat` 对象来绘制直方图。在这个对象中,每个像素代表一个灰度值的计数。通过 `cv::normalize()` 函数将这些计数转换为像素点的数量,以便在绘制直方图时进行比例缩放。最后,使用 `cv::line()` 函数在 `cv::Mat` 对象上绘制直方图。
最后,代码将原始图片和直方图分别显示在 `QLabel` 控件中,然后将这些控件放置在 `QHBoxLayout` 容器中,并将该容器添加到 `QVBoxLayout` 容器中。最终,通过调用 `QWidget::show()` 函数显示主窗口。
阅读全文