def forward(self, x): """Forward function.""" depth_map = self.DarkChannel(x) x = self.patch_embed(x)
时间: 2023-08-10 10:48:58 浏览: 158
这段代码是在一个神经网络模型的 forward 函数中,对输入的 x 进行了处理。具体来说,它先使用 DarkChannel 函数对输入进行处理得到深度图 depth_map,然后使用 patch_embed 函数对输入进行 patch embedding,生成一个新的表示 x。这个新的表示可以被输入到模型的后续层中进行处理。
相关问题
import torch.nn as nnclass ViT(nn.Module): def __init__(self, img_size, patch_size, num_classes, dim): super().__init__() self.patch_size = patch_size num_patches = (img_size // patch_size) ** 2 patch_dim = 3 * patch_size ** 2 # 输入的通道数,3表示RGB通道 self.class_embed = nn.Parameter(torch.randn(1, 1, dim)) self.patch_embed = nn.Linear(patch_dim, dim) self.pos_embed = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.transformer = nn.TransformerEncoderLayer(d_model=dim, nhead=8) self.linear = nn.Linear(dim, num_classes) def forward(self, x): batch_size, _, _, _ = x.shape patches = x.unfold(2, self.patch_size, self.patch_size).unfold(3, self.patch_size, self.patch_size) patches = patches.flatten(2).transpose(1, 2) patch_embed = self.patch_embed(patches) pos_embed = self.pos_embed[:, :(patches.size(1) + 1)] cls_tokens = self.cls_token.expand(batch_size, -1, -1) x = torch.cat([cls_tokens, patch_embed], dim=1) x += pos_embed x = self.transformer(x) x = x.mean(dim=1) x = self.linear(x) return x
这段代码是用来定义一个名为ViT的类,其继承自nn.Module。其有四个参数,包括图像尺寸img_size、每个patch的尺寸patch_size、类别数目num_classes和维度dim。在初始化时,代码调用了父类的构造函数,并且将patch_size保存在self.patch_size中。由于图像被切成了多个patch,因此需要计算patch的数目num_patches,以及每个patch的维度patch_dim。
def _freeze_stages(self): if self.frozen_stages >= 0: self.patch_embed.eval() for param in self.patch_embed.parameters(): param.requires_grad = False if self.frozen_stages >= 1: self.pos_drop.eval() for i in range(0, self.frozen_stages): m = self.layers[i] m.eval() for param in m.parameters(): param.requires_grad = False
这段代码是一个私有方法 `_freeze_stages`,用于冻结模型的前几层,以便进行迁移学习或微调。具体来说,如果 `frozen_stages` 大于等于 0,则冻结 `patch_embed` 模块的所有参数;如果 `frozen_stages` 大于等于 1,则冻结 `pos_drop` 模块以及前 `frozen_stages` 个 `layers` 模块的所有参数。在冻结之前,需要将相应的模块设置为 `eval` 模式,以便在冻结之后仍然能够保持参数不变。此外,需要将 `param.requires_grad` 设置为 `False`,以禁用梯度计算。
阅读全文
相关推荐















