用matlab的surf函数画 x^2-y^2-4*z^2=4的旋转抛物面
时间: 2024-05-29 12:10:52 浏览: 106
首先需要将方程进行简化,将z作为独立变量,得到:
z = sqrt((x^2 - y^2 - 4)/4)
然后定义x和y的范围,以及生成网格点:
x = linspace(-5,5,100);
y = linspace(-5,5,100);
[X,Y] = meshgrid(x,y);
根据上面的方程计算z的值:
Z = sqrt((X.^2 - Y.^2 - 4)/4);
最后使用surf函数绘制旋转抛物面:
surf(X,Y,Z);
xlabel('x');
ylabel('y');
zlabel('z');
title('x^2-y^2-4*z^2=4的旋转抛物面');
相关问题
MATLAB绘制sqrt((x^2-x*y+y^2)/2)在二维的曲线,不适用contour命令
您可以使用MATLAB的plot函数来绘制这个二维曲线。具体步骤如下:
1. 定义x和y的范围,以及步长:
```
x = -10:0.1:10;
y = -10:0.1:10;
```
2. 使用meshgrid生成二维坐标矩阵X和Y:
```
[X, Y] = meshgrid(x, y);
```
3. 根据公式计算Z值:
```
Z = sqrt((X.^2 - X.*Y + Y.^2)/2);
```
4. 使用surf函数或mesh函数绘制曲面:
```
surf(X, Y, Z);
```
或者
```
mesh(X, Y, Z);
```
5. 可以使用其他函数调整图形的外观,例如colormap、shading等。
完整代码如下:
```
x = -10:0.1:10;
y = -10:0.1:10;
[X, Y] = meshgrid(x, y);
Z = sqrt((X.^2 - X.*Y + Y.^2)/2);
surf(X, Y, Z);
colormap(jet);
shading interp;
```
运行后,将会得到一个类似于旋转的抛物面的图形,这个图形就是sqrt((x^2 - x*y + y^2)/2)的二维曲线。
用matlab做双曲抛物面z=x²-y²/4的图形,其中-6≤x≤6,-14≤y≤14
可以使用meshgrid函数生成x和y的网格点坐标,然后计算z的值,最后使用surf函数绘制双曲抛物面的图形。
代码如下:
```matlab
% 定义x和y的范围和步长
x = linspace(-6, 6, 100);
y = linspace(-14, 14, 100);
% 生成x和y的网格点坐标
[X, Y] = meshgrid(x, y);
% 计算z的值
Z = X.^2 - Y.^2/4;
% 绘制双曲抛物面的图形
surf(X, Y, Z);
xlabel('x');
ylabel('y');
zlabel('z');
title('双曲抛物面 z=x^2-y^2/4');
```
运行代码可以得到如下图形:

阅读全文
相关推荐
















