arima模型对参数进行显著性检验,r语言代码
时间: 2024-01-19 13:03:56 浏览: 448
以下是用R语言进行ARIMA模型参数显著性检验的代码:
```
# 安装并加载forecast包
install.packages("forecast")
library(forecast)
# 假设你已经建立了ARIMA模型并保存在变量model中
# 对参数进行显著性检验
summary(model)
```
在ARIMA模型的summary()函数的输出中,我们可以看到参数的估计值、标准误以及对应的t统计量和p值。如果p值小于0.05,就可以认为该参数的估计值是显著不为零的。如果p值大于0.05,就不能拒绝该参数为零的假设。
相关问题
R语言Arima模型参数显著性检验代码
在R语言中,可以使用`arima()`函数来拟合ARIMA模型,并使用`summary()`函数来查看各个参数的显著性检验结果。下面是一个示例代码:
```r
# 加载数据集
data <- read.csv("data.csv")
# 拟合ARIMA模型
model <- arima(data$y, order=c(1,1,1), seasonal=list(order=c(1,0,0), period=12))
# 查看模型参数的显著性检验结果
summary(model)
```
其中,`order`参数表示ARIMA模型的阶数,`seasonal`参数表示季节性调整的阶数和周期。在上面的示例代码中,我们拟合了一个ARIMA(1,1,1)模型,并进行了季节性调整,周期为12个月。
`summary()`函数会输出模型的各个参数的估计值、标准误、t值、p值以及对应的置信区间。其中,p值越小表示该参数越显著。如果p值小于0.05,则通常认为该参数是显著的。
例如,下面是`summary()`函数输出的部分结果:
```
Coefficients:
ar1 ma1 sar1
-0.0874 -0.8650 0.0827
s.e. 0.0488 0.0466 0.0512
sigma^2 estimated as 0.04376: log likelihood=123.78
AIC=-237.56 AICc=-237.13 BIC=-227.51
# 对应的参数解释:
# ar1表示AR(1)系数,ma1表示MA(1)系数,sar1表示季节性AR(1)系数
# s.e.表示标准误
# sigma^2表示方差,log likelihood表示对数似然函数值
# AIC、AICc和BIC分别表示赤池信息准则、AIC校正和贝叶斯信息准则
```
从上面的结果中可以看出,AR(1)系数`ar1`和季节性AR(1)系数`sar1`的p值都小于0.05,因此它们是显著的。而MA(1)系数`ma1`的p值大于0.05,因此不是显著的。
R语言对Arima—garch模型的系数进行显著性检验的代码
在 R 语言中,对 ARIMA-GARCH 模型的系数进行显著性检验,可以使用`coefTest()`函数。具体步骤如下:
1. 首先,需要通过`ugarchfit()`函数拟合 ARIMA-GARCH 模型,例如:
```R
library(rugarch)
model <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),
mean.model = list(armaOrder = c(1,1), include.mean = TRUE),
distribution.model = "std")
fit <- ugarchfit(spec = model, data = returns)
```
其中,`ugarchspec()`函数用于指定 ARIMA-GARCH 模型的参数,`ugarchfit()`函数用于拟合模型。
2. 然后,可以使用`coefTest()`函数对模型中各个系数进行显著性检验,例如:
```R
coefTest(fit, vcov = sandwich)
```
其中,`fit`为拟合好的 ARIMA-GARCH 模型对象,`vcov = sandwich`表示使用异方差稳健协方差矩阵进行显著性检验。
此函数的输出结果将包括模型中各个系数的估计值、标准误、z值、p值等信息,可以用于判断各个系数是否显著。
阅读全文