给我一个实现了ECA的pytorch代码
时间: 2024-05-16 15:15:03 浏览: 189
基于Pytorch框架实现的ResNet18中嵌入视觉注意力机制python+源代码+文档说明+数据集.zip
以下是一个简单的 PyTorch 代码示例,演示了如何实现 ECA 卷积层:
```python
import torch.nn as nn
import torch.nn.functional as F
class ECALayer(nn.Module):
def __init__(self, channels, gamma=2, b=1):
super(ECALayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv1d(channels, channels, kernel_size=1, stride=1)
self.sigmoid = nn.Sigmoid()
self.gamma = gamma
self.b = b
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.conv(y.unsqueeze(-1)).squeeze(-1)
y = self.sigmoid(y).view(b, c, 1, 1)
return self.b + self.gamma * y * x
class ECAConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True, gamma=2, b=1):
super(ECAConv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias)
self.eca = ECALayer(out_channels, gamma=gamma, b=b)
def forward(self, x):
x = self.conv(x)
x = self.eca(x)
return x
```
在这个实现中,我们定义了两个类:`ECALayer` 和 `ECAConv2d`。`ECALayer` 实现了 ECA 模块,它首先对输入进行全局平均池化,然后通过一个 1D 卷积层和 Sigmoid 激活函数计算通道注意力权重,最后乘以输入,得到 ECA 之后的输出。`ECAConv2d` 则是将 ECA 模块集成到了卷积层中,将输入先通过一个标准卷积层进行计算,然后再通过 `ECALayer` 进行 ECA 处理,得到最终输出。
阅读全文