pytorch写一个ECA注意力代码
时间: 2024-03-30 15:10:46 浏览: 166
Sure, here's some sample code:
```python
import torch
import torch.nn as nn
class ECALayer(nn.Module):
def __init__(self, channel, gamma=2, b=1):
super(ECALayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv1d(channel, channel, kernel_size=1, bias=False)
self.sigmoid = nn.Sigmoid()
self.gamma = gamma
self.b = b
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x)
y = y.squeeze(3).transpose(1, 2)
y = self.conv(y)
y = y.transpose(1, 2).unsqueeze(3)
y = self.sigmoid(y * self.gamma + self.b)
return x * y
```
This is an implementation of the ECA (Efficient Channel Attention) module in PyTorch. The ECA module uses a convolutional layer to learn channel-wise attention weights based on the global average pooling of the input feature map.
阅读全文