stm32串口接收数据存储

时间: 2023-08-24 11:09:49 浏览: 256
在 STM32 上,可以使用 DMA 或者中断方式来实现串口接收数据并存储。下面分别介绍这两种方式: 1. DMA 方式 使用 DMA 方式可以实现串口数据的无缝接收和存储,不需要 CPU 参与。其操作流程如下: 1)配置串口的 DMA 接收,并使能 DMA 通道。 2)在 DMA 传输完成中断中,将接收到的数据存储到指定的缓冲区中,并更新缓冲区指针。 下面是一个简单的示例代码: ```c #define BUFFER_SIZE 128 uint8_t rx_buffer[BUFFER_SIZE]; volatile uint32_t rx_buffer_head = 0; volatile uint32_t rx_buffer_tail = 0; void USART3_DMA_Init(void) { // 使能 DMA 时钟 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA1, ENABLE); // 配置 DMA 通道 DMA_InitTypeDef DMA_InitStruct; DMA_InitStruct.DMA_Channel = DMA_Channel_4; DMA_InitStruct.DMA_PeripheralBaseAddr = (uint32_t)&USART3->DR; DMA_InitStruct.DMA_Memory0BaseAddr = (uint32_t)rx_buffer; DMA_InitStruct.DMA_DIR = DMA_DIR_PeripheralToMemory; DMA_InitStruct.DMA_BufferSize = BUFFER_SIZE; DMA_InitStruct.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStruct.DMA_MemoryInc = DMA_MemoryInc_Enable; DMA_InitStruct.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; DMA_InitStruct.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; DMA_InitStruct.DMA_Mode = DMA_Mode_Circular; DMA_InitStruct.DMA_Priority = DMA_Priority_High; DMA_InitStruct.DMA_FIFOMode = DMA_FIFOMode_Disable; DMA_InitStruct.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; DMA_InitStruct.DMA_MemoryBurst = DMA_MemoryBurst_Single; DMA_InitStruct.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; DMA_Init(DMA1_Stream1, &DMA_InitStruct); // 使能 DMA 通道 DMA_Cmd(DMA1_Stream1, ENABLE); // 配置 USART3 接收中断 USART_ITConfig(USART3, USART_IT_IDLE, ENABLE); } void USART3_IRQHandler(void) { if (USART_GetITStatus(USART3, USART_IT_IDLE) != RESET) { // 清除中断标志位 USART_ClearITPendingBit(USART3, USART_IT_IDLE); // 关闭 DMA 通道 DMA_Cmd(DMA1_Stream1, DISABLE); // 计算接收数据的长度 uint32_t length = BUFFER_SIZE - DMA_GetCurrDataCounter(DMA1_Stream1); // 更新缓冲区指针 rx_buffer_tail = (rx_buffer_tail + length) % BUFFER_SIZE; // 重新启动 DMA 通道 DMA_SetCurrDataCounter(DMA1_Stream1, BUFFER_SIZE); DMA_Cmd(DMA1_Stream1, ENABLE); } } ``` 2. 中断方式 使用中断方式可以实现对串口数据的实时处理,但需要 CPU 参与中断处理。其操作流程如下: 1)配置串口接收中断,并使能串口接收中断。 2)在串口接收中断中,将接收到的数据存储到指定的缓冲区中,并更新缓冲区指针。 下面是一个简单的示例代码: ```c #define BUFFER_SIZE 128 uint8_t rx_buffer[BUFFER_SIZE]; volatile uint32_t rx_buffer_head = 0; volatile uint32_t rx_buffer_tail = 0; void USART3_Init(void) { // 使能串口时钟 RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE); // 配置串口参数 USART_InitTypeDef USART_InitStruct; USART_InitStruct.USART_BaudRate = 115200; USART_InitStruct.USART_WordLength = USART_WordLength_8b; USART_InitStruct.USART_StopBits = USART_StopBits_1; USART_InitStruct.USART_Parity = USART_Parity_No; USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStruct.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(USART3, &USART_InitStruct); // 配置串口接收中断 NVIC_InitTypeDef NVIC_InitStruct; NVIC_InitStruct.NVIC_IRQChannel = USART3_IRQn; NVIC_InitStruct.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStruct.NVIC_IRQChannelSubPriority = 0; NVIC_InitStruct.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStruct); // 使能串口接收中断 USART_ITConfig(USART3, USART_IT_RXNE, ENABLE); // 启动串口 USART_Cmd(USART3, ENABLE); } void USART3_IRQHandler(void) { if (USART_GetITStatus(USART3, USART_IT_RXNE) != RESET) { // 读取接收到的数据 uint8_t data = USART_ReceiveData(USART3); // 存储数据到缓冲区 rx_buffer[rx_buffer_head] = data; // 更新缓冲区指针 rx_buffer_head = (rx_buffer_head + 1) % BUFFER_SIZE; // 清除中断标志位 USART_ClearITPendingBit(USART3, USART_IT_RXNE); } } ``` 以上两种方法都是常用的 STM32 串口接收数据并存储的方式,具体选择哪种方式可以根据实际需求和场景来决定。

相关推荐

最新推荐

recommend-type

关于STM32的flash读写数据和HardFault_Handler的问题

今天调试程序的时候需要把掉电前的数据存储到flash中之后等待下次...刚刚开始的时候去找了一些stm32的flash的操作,真的是废话连篇的真正能用到的没几句话,这里我把自己调试好的flash读写数据的子函数跟大家分享一下。
recommend-type

基于springboot+vue+MySQL实现的在线考试系统+源代码+文档

web期末作业设计网页 基于springboot+vue+MySQL实现的在线考试系统+源代码+文档
recommend-type

318_面向物联网机器视觉的目标跟踪方法设计与实现的详细信息-源码.zip

提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
recommend-type

FPGA Verilog 计算信号频率,基础时钟100Mhz,通过锁相环ip核生成200Mhz检测时钟,误差在10ns

结合等精度测量原理和原理示意图可得:被测时钟信号的时钟频率fx的相对误差与被测时钟信号无关;增大“软件闸门”的有效范围或者提高“标准时钟信号”的时钟频率fs,可以减小误差,提高测量精度。 实际闸门下被测时钟信号周期数为X,设被测信号时钟周期为Tfx,它的时钟频率fx = 1/Tfx,由此可得等式:X * Tfx = X / fx = Tx(实际闸门)。 其次,将两等式结合得到只包含各自时钟周期计数和时钟频率的等式:X / fx = Y / fs = Tx(实际闸门),等式变换,得到被测时钟信号时钟频率计算公式:fx = X * fs / Y。 最后,将已知量标准时钟信号时钟频率fs和测量量X、Y带入计算公式,得到被测时钟信号时钟频率fx。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依