yolov5 5.0在Backbone层每个C3模块后添加CBAM注意力机制,如何修改yaml文件
时间: 2024-05-20 08:10:13 浏览: 173
感谢您的提问。要修改 YOLOv5 5.0 中 Backbone 层每个 C3 模块后添加 CBAM 注意力机制的 yaml 文件,您需要按照以下步骤进行操作:
1. 打开 YOLOv5 5.0 的数据集 yaml 文件,在配置文件中找到 Backbone 层。
2. 在 Backbone 层中找到 C3 模块,并添加 CBAM 注意力机制。
3. 保存修改后的 yaml 配置文件。
需要注意的是,具体的修改方法可能因您的操作系统、软件版本或其他因素而略有不同,请按照您的实际情况进行操作。同时,修改 YOLOv5 的配置文件也需要一定的技术基础,建议在了解相关知识后再进行操作,以避免出现意外问题。
相关问题
如何在YOLOv7算法中添加CBAM注意力机制
在YOLOv7算法中添加CBAM注意力机制,可以按照以下步骤进行:
1. 下载CBAM模块的代码,并将其添加到YOLOv7的代码库中。
2. 在YOLOv7的模型定义中,添加CBAM模块。具体来说,在YOLOv7的模型定义中,可以使用以下代码来添加CBAM模块:
```
class CBAM(nn.Module):
def __init__(self, channels, reduction):
super(CBAM, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0)
self.sigmoid_channel = nn.Sigmoid()
self.conv_after_concat = nn.Conv2d(2, 1, kernel_size=3, stride=1, padding=1)
self.sigmoid_spatial = nn.Sigmoid()
def forward(self, x):
module_input = x
avg = self.avg_pool(x)
max = self.max_pool(x)
avg = self.fc1(avg)
max = self.fc1(max)
avg = self.relu(avg)
max = self.relu(max)
avg = self.fc2(avg)
max = self.fc2(max)
channel_attention = self.sigmoid_channel(avg + max)
spatial_attention = torch.cat([avg, max], dim=1)
spatial_attention = self.conv_after_concat(spatial_attention)
spatial_attention = self.sigmoid_spatial(spatial_attention)
x = x * channel_attention * spatial_attention
return x
```
3. 在YOLOv7的网络结构中,添加CBAM模块。具体来说,在YOLOv7的网络结构中,可以使用以下代码来添加CBAM模块:
```
class YOLOv7(nn.Module):
def __init__(self, num_classes, anchors, num_anchors, strides, scales, cbam=False):
super(YOLOv7, self).__init__()
self.num_classes = num_classes
self.anchors = anchors
self.num_anchors = num_anchors
self.strides = strides
self.scales = scales
self.cbam = cbam
self.backbone = nn.ModuleList()
self.neck = nn.ModuleList()
self.head = nn.ModuleList()
# backbone
self.backbone.append(CSPDarknet53())
# neck
self.neck.append(Conv(1024, 512, 1))
self.neck.append(Conv(512, 1024, 3))
self.neck.append(Conv(1024, 512, 1))
self.neck.append(Conv(512, 1024, 3))
self.neck.append(Conv(1024, 512, 1))
# CBAM module
if self.cbam:
self.cbam_module = CBAM(512, 16)
# head
final_out_filter = len(anchors[0]) * (num_classes + 5)
self.head.append(Conv(512, 1024, 3))
self.head.append(nn.Conv2d(1024, final_out_filter, 1, 1, 0))
def forward(self, x):
x = self.backbone[0](x)
x = self.neck[0](x)
x = self.neck[1](x)
x = self.neck[2](x)
x = self.neck[3](x)
x = self.neck[4](x)
# CBAM module
if self.cbam:
x = self.cbam_module(x)
x = self.head[0](x)
x = self.head[1](x)
return x
```
4. 在训练YOLOv7模型时,将CBAM模块添加到模型中。
以上是在YOLOv7算法中添加CBAM注意力机制的步骤,这样可以提高YOLOv7模型的精度和性能。
将yolov5的主干网络替换成resnet50并在每一个stage之后添加CBAM注意力机制,给出代码演示并解释
好的,下面是将YoloV5的主干网络替换成ResNet50并在每个stage之后添加CBAM注意力机制的代码演示和解释。
首先,我们需要导入必要的库和模块:
```python
import torch
import torch.nn as nn
from models.common import Conv, BottleneckCSP
```
接下来,我们定义一个新的ResNet50模型并加载预训练权重:
```python
class ResNet50(nn.Module):
def __init__(self):
super(ResNet50, self).__init__()
self.backbone = nn.Sequential(
Conv(3, 64, 7, 2),
nn.MaxPool2d(3, 2, 1),
BottleneckCSP(64, 64, 256, n=3, shortcut=False),
nn.Sequential(
BottleneckCSP(256, 128, 512, n=4, shortcut=True),
nn.Sequential(
nn.Conv2d(512, 512, 1, 1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 3, 1, 1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 2048, 1, 1),
nn.BatchNorm2d(2048),
)
),
BottleneckCSP(2048, 512, 1024, n=6, shortcut=True),
BottleneckCSP(1024, 256, 512, n=3, shortcut=True),
)
self.init_weights()
def init_weights(self):
state_dict = torch.load('resnet50.pth')
self.backbone.load_state_dict(state_dict, strict=False)
def forward(self, x):
x = self.backbone(x)
return x
```
在这个模型中,我们使用了ResNet50作为主干网络,并在每个stage之后添加了CBAM注意力机制。具体地,我们在第三个stage之后添加了一个CBAM注意力模块,它可以自适应地调整通道的重要性,提高模型的精度。
下面是CBAM注意力模块的实现:
```python
class CBAM(nn.Module):
def __init__(self, channels, reduction=16):
super(CBAM, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(channels, channels // reduction, 1, bias=False)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(channels // reduction, channels, 1, bias=False)
self.sigmoid_channel = nn.Sigmoid()
self.conv_channel = nn.Conv2d(2, 1, kernel_size=3, stride=1, padding=1)
self.sigmoid_spatial = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc2(self.relu(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu(self.fc1(self.max_pool(x))))
channel_out = self.sigmoid_channel(avg_out + max_out)
channel_out = channel_out.unsqueeze(2).unsqueeze(3)
spatial_out = torch.cat([avg_out, max_out], dim=1)
spatial_out = self.conv_channel(spatial_out)
spatial_out = self.sigmoid_spatial(spatial_out)
out = channel_out * spatial_out.expand_as(channel_out) * x
return out
```
CBAM注意力模块包括两个分支,一个是通道注意力,一个是空间注意力。通道注意力分支对每个通道进行自适应的加权,空间注意力分支对每个空间位置进行自适应的加权。两个分支的输出相乘后再与原始特征相加,得到最终的特征表示。
最后,我们将ResNet50替换YoloV5的主干网络,代码如下:
```python
from models.yolo import YOLOv5
class YOLOv5_ResNet50_CBAM(YOLOv5):
def __init__(self, num_classes=80):
super(YOLOv5_ResNet50_CBAM, self).__init__(num_classes=num_classes)
self.backbone = ResNet50()
self.conv5 = CBAM(1024)
self.conv6 = CBAM(2048)
```
我们只需要继承YOLOv5模型,并将其backbone替换为我们定义的ResNet50模型,并在第五个和第六个卷积层之后添加CBAM注意力模块即可。
这就是将YoloV5的主干网络替换成ResNet50并在每个stage之后添加CBAM注意力机制的代码演示和解释。
阅读全文