adjusted_rand_score

时间: 2023-04-26 21:01:26 浏览: 62
调整兰德指数(Adjusted Rand Score)是一种用于评估聚类算法性能的指标,它可以衡量聚类结果与真实标签之间的相似度。该指标的取值范围在-1到1之间,其中1表示完全匹配,表示随机匹配,-1表示完全不匹配。
相关问题

metrics.adjusted_rand_score

metrics.adjusted_rand_score是一种用于衡量聚类算法性能的指标,它可以评估聚类结果与真实标签之间的相似度。该指标的取值范围为[-1,1],其中1表示聚类结果与真实标签完全一致,表示聚类结果与随机分配标签相同,-1表示聚类结果与真实标签完全相反。该指标可以用于比较不同聚类算法的性能,以及优化聚类算法的参数。

AttributeError: module 'keras.metrics' has no attribute 'adjusted_rand_score'

在Keras中,`adjusted_rand_score`不是`keras.metrics`模块的属性。`adjusted_rand_score`是一个用于计算聚类算法性能的指标,通常在`sklearn.metrics`模块中使用。 如果你想在Keras中使用`adjusted_rand_score`,你需要导入`sklearn.metrics`模块,并使用它来计算聚类算法的性能。以下是一个示例代码: ```python from sklearn.metrics import adjusted_rand_score # 假设你有两个聚类结果的标签 labels_true = [0, 0, 1, 1, 2, 2] labels_pred = [0, 0, 1, 1, 3, 3] # 计算adjusted_rand_score score = adjusted_rand_score(labels_true, labels_pred) print("Adjusted Rand Score:", score) ```

相关推荐

import numpy as np import pandas as pd from sklearn.decomposition import PCA import matplotlib.pyplot as plt # 加载数据集 iris = pd.read_csv('iris_pca.csv') X = iris.iloc[:, :-1] y = iris.iloc[:, -1] # PCA降维 pca = PCA(n_components=2) X_pca = pca.fit_transform(X) # DBSCAN聚类 def dbscan(X, eps=0.5, min_samples=5): m, n = X.shape visited = np.zeros(m, dtype=bool) labels = np.zeros(m, dtype=int) cluster_id = 1 for i in range(m): if not visited[i]: visited[i] = True neighbors = get_neighbors(X, i, eps) if len(neighbors) < min_samples: labels[i] = -1 else: expand_cluster(X, i, neighbors, visited, labels, cluster_id, eps, min_samples) cluster_id += 1 return labels def get_neighbors(X, i, eps): dists = np.sum((X - X[i]) ** 2, axis=1) neighbors = np.where(dists < eps ** 2)[0] return neighbors def expand_cluster(X, i, neighbors, visited, labels, cluster_id, eps, min_samples): labels[i] = cluster_id for j in neighbors: if not visited[j]: visited[j] = True new_neighbors = get_neighbors(X, j, eps) if len(new_neighbors) >= min_samples: neighbors = np.union1d(neighbors, new_neighbors) if labels[j] == 0: labels[j] = cluster_id labels = dbscan(X_pca, eps=0.5, min_samples=5) # 簇的总数 n_clusters = len(set(labels)) - (1 if -1 in labels else 0) print("簇的总数:", n_clusters) # 各样本所归属簇的编号 print("各样本所归属簇的编号:", labels) # 外部指标 from sklearn.metrics import adjusted_rand_score, fowlkes_mallows_score ri = adjusted_rand_score(y, labels) fmi = fowlkes_mallows_score(y, labels) print("RI:", ri) print("FMI:", fmi) # 内部指标 from sklearn.metrics import davies_bouldin_score dbi = davies_bouldin_score(X_pca, labels) print("DBI:", dbi) # 可视化输出 plt.scatter(X_pca[:, 0], X_pca[:, 1], c=labels) plt.show(),请为我分析这段代码的运行结果

修改下面代码,另画一张可视化图展示出t_sne里面的数据每15行数据个用一种颜色画出。 import pandas as pd from sklearn import cluster from sklearn import metrics import matplotlib.pyplot as plt from sklearn.manifold import TSNE from sklearn.decomposition import PCA def k_means(data_set, output_file, png_file, t_labels, score_file, set_name): model = cluster.KMeans(n_clusters=7, max_iter=1000, init="k-means++") model.fit(data_set) # print(list(model.labels_)) p_labels = list(model.labels_) r = pd.concat([data_set, pd.Series(model.labels_, index=data_set.index)], axis=1) r.columns = list(data_set.columns) + [u'聚类类别'] print(r) # r.to_excel(output_file) with open(score_file, "a") as sf: sf.write("By k-means, the f-m_score of " + set_name + " is: " + str(metrics.fowlkes_mallows_score(t_labels, p_labels))+"\n") sf.write("By k-means, the rand_score of " + set_name + " is: " + str(metrics.adjusted_rand_score(t_labels, p_labels))+"\n") '''pca = PCA(n_components=2) pca.fit(data_set) pca_result = pca.transform(data_set) t_sne = pd.DataFrame(pca_result, index=data_set.index)''' t_sne = TSNE() t_sne.fit(data_set) t_sne = pd.DataFrame(t_sne.embedding_, index=data_set.index) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False dd = t_sne[r[u'聚类类别'] == 0] plt.plot(dd[0], dd[1], 'r.') dd = t_sne[r[u'聚类类别'] == 1] plt.plot(dd[0], dd[1], 'go') dd = t_sne[r[u'聚类类别'] == 2] plt.plot(dd[0], dd[1], 'b*') dd = t_sne[r[u'聚类类别'] == 3] plt.plot(dd[0], dd[1], 'o') dd = t_sne[r[u'聚类类别'] == 4] plt.plot(dd[0], dd[1], 'm.') dd = t_sne[r[u'聚类类别'] == 5] plt.plot(dd[0], dd[1], 'co') dd = t_sne[r[u'聚类类别'] == 6] plt.plot(dd[0], dd[1], 'y*') plt.savefig(png_file) plt.clf() '''plt.scatter(data_set.iloc[:, 0], data_set.iloc[:, 1], c=model.labels_) plt.savefig(png_file) plt.clf()''' frog_data = pd.read_csv("D:/PyCharmPython/pythonProject/mfcc3.csv") tLabel = [] for family in frog_data['name']: if family == "A": tLabel.append(0) elif family == "B": tLabel.append(1) elif family == "C": tLabel.append(2) elif family == "D": tLabel.append(3) elif family == "E": tLabel.append(4) elif family == "F": tLabel.append(5) elif family == "G": tLabel.append(6) scoreFile = "D:/PyCharmPython/pythonProject/scoreOfClustering.txt" first_set = frog_data.iloc[:, 1:1327] k_means(first_set, "D:/PyCharmPython/pythonProject/kMeansSet_1.xlsx", "D:/PyCharmPython/pythonProject/kMeansSet_2.png", tLabel, scoreFile, "Set_1")

最新推荐

recommend-type

####这是一篇对python的详细解析

python
recommend-type

菜日常菜日常菜日常菜日常

菜日常菜日常菜日常菜日常
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。