B_, N, C = x.shape qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1))
时间: 2023-06-19 14:07:28 浏览: 410
这是一个 Transformer 模型中的 self-attention 的实现代码。其中 x 是输入的数据,qkv 是对输入数据进行线性变换后得到的三个向量 q、k、v,表示查询、键、值。num_heads 表示头的数目,C 表示每个头的维度。在这段代码中,将 qkv reshape 后,将 q、k 进行转置,然后计算注意力得分,得到注意力矩阵 attn。注意力矩阵可以用来加权求和值向量,即 v,得到最终的 self-attention 输出结果。这个过程可以并行计算,因为注意力矩阵的每一行都只与其他行独立计算。
相关问题
import math import torch from torch import nn from d2l import torch as d2l def transpose_qkv(X,num_heads): X = X.reshape(X.shape[0], X.shape[1], num_heads, -1) X = X.permute(0, 2, 1, 3) return X.reshape(-1, X.shape[2], X.shape[3]) def transpose_output(X,num_heads): X = X.reshape(-1, num_heads, X.shape[1], X.shape[2]) X = X.permute(0, 2, 1, 3) return X.reshape(X.shape[0], X.shape[1], -1) class MultiHeadAttention(nn.Module): def __init__(self,key_size,query_size,value_size,num_hiddens, num_heads,dropout,bias=False,**kwargs): super(MultiHeadAttention,self).__init__(**kwargs) self.num_heads = num_heads self.attention = d2l.DotProductAttention(dropout) self.W_q = nn.Linear(query_size,num_hiddens,bias=bias) self.W_k = nn.Linear(key_size,num_hiddens,bias=bias) self.W_v = nn.Linear(value_size,num_hiddens,bias=bias) self.W_o = nn.Linear(num_hiddens,num_hiddens,bias=bias) def forward(self,queries,keys,values,valid_lens): queries = transpose_qkv(self.W_q(queries), self.num_heads) keys = transpose_qkv(self.W_k(keys), self.num_heads) values = transpose_qkv(self.W_v(values), self.num_heads) if valid_lens is not None: valid_lens = torch.repeat_interleave(valid_lens, repeats=self.num_heads, dim=0) output = self.attention(queries,keys,values,valid_lens) output_concat = transpose_output(output,self.num_heads) return self.W_o(output_concat)
这段代码实现了多头注意力机制(Multi-Head Attention)的模块。多头注意力机制是用于处理序列数据的深度学习模型中常的组件,它可以并行地对输入序列进行不同位置的关注。
在这段代码中,`MultiHeadAttention` 类继承自 `nn.Module`,并实现了 `forward` 方法来定义前向传播的计算过程。在初始化方法 `__init__` 中,定义了多头注意力机制所需的参数,包括输入和输出的维度、头数、隐藏层大小等。同时,还定义了线性变换层 `W_q`、`W_k`、`W_v` 和 `W_o`,用于将输入序列映射到查询、键、值和输出空间。
在 `forward` 方法中,首先对查询、键和值进行线性变换,并通过 `transpose_qkv` 函数将它们转置为多头注意力机制所需的形状。然后,调用 `DotProductAttention` 类来计算注意力权重,并将注意力加权的值进行转置和重塑操作,最后通过线性变换层 `W_o` 得到最终的输出。
需要注意的是,在计算过程中,如果提供了有效长度 `valid_lens`,则将其在维度0上进行复制以适应多头注意力机制的并行计算。
这段代码使用了 PyTorch 框架和 d2l 库来实现多头注意力机制。具体实现细节可以参考 d2l 库中的相关章节或文档。
def forward(self, x): B, N, C = x.shape if self.with_qkv: qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] else: qkv = x.reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) q, k, v = qkv, qkv, qkv ## get relative pos bias relative_pos_bias = self.relative_position_bias_table[self.relative_coords].view(self.num_ttokens, self.num_ttokens, -1).permute(2, 0, 1).contiguous() attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn + relative_pos_bias.unsqueeze(0) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) if self.with_qkv: x = self.proj(x) x = self.proj_drop(x) return x
这段代码是一个Transformer中多头注意力机制的前向传播过程。其中包含了以下步骤:
1. 根据输入x的形状(B, N, C),判断是否需要进行qkv投影。如果需要,则先将x通过一个qkv线性变换,分别得到query、key、value向量。
2. 获取相对位置偏置(relative_pos_bias),这个偏置是用于处理序列中不同位置之间的关系,这里使用了相对位置编码的方法。
3. 计算注意力得分,即将query和key向量进行点积操作,并除以一个缩放因子(scale)。得到的注意力得分再加上相对位置偏置。
4. 对得到的注意力得分进行softmax操作,得到注意力权重。
5. 对注意力权重进行dropout操作,以减少过拟合。
6. 将得到的注意力权重与value向量进行加权求和,得到输出向量。
7. 如果需要进行qkv投影,则将输出向量通过一个线性变换进行投影,得到最终输出。同时进行dropout操作,以减少过拟合。
8. 返回最终输出向量。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044736.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)