torch.normal
时间: 2023-07-03 11:07:35 浏览: 162
torch.normal 是 PyTorch 中的一个函数,用于生成符合指定均值和标准差的正态分布随机数。它的语法如下:
```python
torch.normal(mean, std, out=None)
```
其中,mean 是均值,std 是标准差,out 是可选的输出张量。如果没有指定输出张量,则会创建一个新的张量来存储生成的随机数。
例如,下面的代码生成一个大小为 (3, 2) 的张量,每个元素都是从均值为 0、标准差为 1 的正态分布中随机生成的数:
```python
import torch
x = torch.normal(mean=0, std=1, size=(3, 2))
print(x)
```
输出:
```
tensor([[ 0.8104, 0.6355],
[-0.3769, -0.9687],
[-0.4829, 0.6199]])
```
相关问题
torch .normal
torch.normal函数可以用于从指定的均值和标准差中生成服从正态分布(高斯分布)的随机数。它的用法如下:
```python
torch.normal(mean, std, size=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor
```
参数解释:
- `mean`:一个张量或浮点数,表示正态分布的均值。
- `std`:一个张量或浮点数,表示正态分布的标准差。
- `size`:要生成的随机数的形状。它可以是一个整数或元组。
- `out`:输出张量,用于存储结果。如果未提供,则会创建一个新张量。
- `dtype`:输出张量的数据类型。如果未提供,则使用输入张量的数据类型。
- `layout`:输出张量的布局。
- `device`:输出张量的设备。
- `requires_grad`:指定是否为输出张量开启梯度计算。
示例用法:
```python
import torch
mean = 0
std = 1
size = (3, 4)
random_tensor = torch.normal(mean, std, size=size)
print(random_tensor)
```
这会生成一个形状为(3, 4)的随机张量,其中元素服从均值为0,标准差为1的正态分布。
人工构造的数据集如下: import torch import matplotlib.pyplot as plt n_data = torch.ones(50, 2) x1 = torch.normal(2 * n_data, 1) y1 = torch.zeros(50) x2 = torch.normal(-2 * n_data, 1) y2 = torch.ones(50) x = torch.cat((x1, x2), 0).type(torch.FloatTensor) y = torch.cat((y1, y2), 0).type(torch.FloatTensor) 请用python从0实现logistic回归(只借助Tensor和Numpy相关的库)
要使用 Python 从零实现逻辑回归,只借助 Tensor 和 NumPy 相关的库,可以按照以下步骤进行操作:
1. 导入所需的库:
```python
import numpy as np
import torch
```
2. 准备数据:
```python
n_data = torch.ones(50, 2)
x1 = torch.normal(2 * n_data, 1)
y1 = torch.zeros(50)
x2 = torch.normal(-2 * n_data, 1)
y2 = torch.ones(50)
x = torch.cat((x1, x2), 0).type(torch.FloatTensor)
y = torch.cat((y1, y2), 0).type(torch.FloatTensor)
```
3. 定义模型参数:
```python
w = torch.randn(2, 1, requires_grad=True) # 权重参数
b = torch.zeros(1, requires_grad=True) # 偏置参数
```
4. 定义模型和损失函数:
```python
def logistic_regression(x):
return torch.sigmoid(torch.mm(x, w) + b)
def cross_entropy(y_pred, y):
return -torch.mean(y * torch.log(y_pred) + (1 - y) * torch.log(1 - y_pred))
```
5. 定义优化器和训练模型:
```python
lr = 0.01 # 学习率
num_epochs = 1000 # 迭代次数
for epoch in range(num_epochs):
# 前向传播
y_pred = logistic_regression(x)
loss = cross_entropy(y_pred, y)
# 反向传播和优化
loss.backward() # 计算梯度
with torch.no_grad():
w -= lr * w.grad # 更新权重参数
b -= lr * b.grad # 更新偏置参数
w.grad.zero_() # 清零梯度
b.grad.zero_() # 清零梯度
if (epoch+1) % 100 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
```
6. 使用模型进行预测:
```python
with torch.no_grad():
y_pred = logistic_regression(x)
predicted = (y_pred >= 0.5).float()
print('Predicted:', predicted)
```
7. 可视化结果:
```python
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=predicted.numpy().flatten(), s=100, lw=0, cmap='RdYlGn')
plt.show()
```
这样就完成了从零实现逻辑回归的过程。请注意,这里使用了 PyTorch 的自动求导功能来计算梯度,并且使用了 NumPy 进行数据可视化。
阅读全文