python手工实现凝聚式层次聚类

时间: 2023-06-29 19:14:51 浏览: 119
凝聚式层次聚类是一种自底向上的聚类方法,它从每个数据点作为一个簇开始,然后将最相似的簇合并,直到达到预定的聚类数目为止。下面是一个简单的Python实现示例: ```python import numpy as np class AgglomerativeClustering: def __init__(self, n_clusters=2, linkage='ward'): self.n_clusters = n_clusters self.linkage = linkage def fit(self, X): self.n_samples, self.n_features = X.shape self.labels_ = np.arange(self.n_samples) self.n_labels_ = self.n_samples # 计算距离矩阵 self.distances_ = np.zeros((self.n_samples - 1, 3)) self.distances_[:, 0] = np.arange(0, self.n_samples - 1) self.distances_[:, 1] = np.arange(1, self.n_samples) self.distances_[:, 2] = self._compute_distances(X) # 合并簇 while self.n_labels_ > self.n_clusters: # 找到距离最小的簇 min_distance_idx = np.argmin(self.distances_[:, 2]) cluster_i, cluster_j = int(self.distances_[min_distance_idx, 0]), int(self.distances_[min_distance_idx, 1]) # 更新标签 for idx in np.where(self.labels_ == cluster_j)[0]: self.labels_[idx] = cluster_i # 合并簇 if self.linkage == 'ward': new_cluster = self._ward_linkage(X, cluster_i, cluster_j) elif self.linkage == 'single': new_cluster = self._single_linkage(X, cluster_i, cluster_j) elif self.linkage == 'complete': new_cluster = self._complete_linkage(X, cluster_i, cluster_j) else: raise ValueError('Linkage type must be one of ["ward", "single", "complete"]') # 更新距离矩阵 self.distances_ = np.delete(self.distances_, min_distance_idx, axis=0) new_distances = self._compute_distances(X[new_cluster]) new_distances = np.concatenate([new_distances, np.zeros((1,))], axis=0) self.distances_ = np.vstack([self.distances_, np.hstack([np.full((1,), fill_value=cluster_i), np.full((1,), fill_value=cluster_j), new_distances])]) self.n_labels_ -= 1 def _compute_distances(self, X): distances = [] for i in range(self.n_samples - 1): for j in range(i + 1, self.n_samples): distances.append(np.linalg.norm(X[i] - X[j])) return np.array(distances) def _ward_linkage(self, X, cluster_i, cluster_j): new_cluster = np.append(cluster_i, cluster_j) return new_cluster def _single_linkage(self, X, cluster_i, cluster_j): new_cluster = np.append(cluster_i, cluster_j) return new_cluster def _complete_linkage(self, X, cluster_i, cluster_j): new_cluster = np.append(cluster_i, cluster_j) return new_cluster ``` 对于给定的数据集X,可以通过实例化AgglomerativeClustering类并调用fit方法进行聚类操作,例如: ```python from sklearn.datasets import make_blobs import matplotlib.pyplot as plt X, y = make_blobs(n_samples=100, centers=3, n_features=2, random_state=42) model = AgglomerativeClustering(n_clusters=3, linkage='ward') model.fit(X) plt.scatter(X[:, 0], X[:, 1], c=model.labels_) plt.show() ``` 这里使用make_blobs函数生成了一个包含3个中心的、具有2个特征的随机数据集,并将其可视化。聚类的结果可以通过不同颜色的点来表示。需要注意的是,这里的代码仅提供了一种简单的实现方式,实际应用中可能需要根据具体需求进行修改和优化。
阅读全文

相关推荐

最新推荐

recommend-type

Python实现简单层次聚类算法以及可视化

标题中的"Python实现简单层次聚类算法以及可视化"是指使用Python编程语言来实施层次聚类(Hierarchical Clustering)算法,并通过图形化展示聚类结果的过程。层次聚类是一种无监督学习方法,常用于数据挖掘领域,...
recommend-type

python实现鸢尾花三种聚类算法(K-means,AGNES,DBScan)

在本篇文章中,我们将探讨三种在Python中实现的聚类算法,分别是K-means、AGNES(凝聚层次聚类)和DBSCAN(基于密度的空间聚类)。这三种算法在处理鸢尾花数据集时各有特点。 ### 一、K-means聚类 K-means是一种...
recommend-type

python实现mean-shift聚类算法

在Python中,我们可以使用NumPy库来实现这个算法。在给出的实例中,作者创建了一个名为 `MeanShift.py` 的文件,其中包含了Mean-Shift聚类算法的实现。 首先,我们定义了两个阈值常量:`STOP_THRESHOLD` 和 `...
recommend-type

python中实现k-means聚类算法详解

**Python实现K-Means聚类算法详解** K-Means是一种广泛应用的无监督学习算法,主要用于对数据进行聚类,即将相似的数据归为一类。它的主要思想是通过计算样本间的距离来判断它们的相似性,并不断迭代更新质心...
recommend-type

python 代码实现k-means聚类分析的思路(不使用现成聚类库)

Python中的K-means聚类分析是一种无监督学习方法,用于将数据集中的对象分组成不同的类别,使得...在Python中,可以使用Numpy和Pandas等库高效地实现这些操作,同时结合数据可视化工具如Matplotlib来帮助理解聚类结果。
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"