test=car[~car.index.isin(train.index)]

时间: 2024-02-19 11:00:03 浏览: 10
这段代码的作用是从数据集 `car` 中选择出不在训练集 `train` 中出现的样本,然后将这些样本赋值给变量 `test`。其中 `~` 表示取反,`car.index` 表示 `car` 数据集的索引,`train.index` 表示 `train` 数据集的索引,`isin()` 方法用于判断一个元素是否在另一个集合中出现。因此,`~car.index.isin(train.index)` 表示在 `car` 数据集的索引集合中但不在 `train` 数据集的索引集合中出现的元素。最后,使用这些元素对 `car` 数据集进行索引,即可得到 `test` 数据集。
相关问题

Pytorch中怎么使用vis.line 来画train_loss train_acc test_acc 这三条线在同一个图中 并给出一个在深度学习中以网络为resnet50 、数据集为cifar10、把输出的模型保存、输出的数据保存到csv文件中、把代码模块化的实战代码

首先,我们需要安装visdom库,可以使用以下命令: ```python !pip install visdom ``` 接下来,需要在代码中引入相关库和模块: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms import visdom import csv ``` 然后,定义一个函数来加载数据集: ```python def load_dataset(): transform_train = transforms.Compose( [transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) transform_test = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') return trainloader, testloader ``` 接下来,定义一个函数来构建ResNet50网络: ```python class ResNet50(nn.Module): def __init__(self, num_classes=10): super(ResNet50, self).__init__() self.resnet50 = torchvision.models.resnet50(pretrained=False) num_ftrs = self.resnet50.fc.in_features self.resnet50.fc = nn.Linear(num_ftrs, num_classes) def forward(self, x): x = self.resnet50(x) return x ``` 然后,定义一个函数来训练模型: ```python def train(model, trainloader, criterion, optimizer, epoch, device, vis): model.train() train_loss = 0.0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(trainloader): inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() if batch_idx % 10 == 0: vis.line(X=torch.Tensor([epoch+batch_idx/len(trainloader)]), Y=torch.Tensor([train_loss/len(trainloader)]), win='train_loss', update='append', name='train_loss') vis.line(X=torch.Tensor([epoch+batch_idx/len(trainloader)]), Y=torch.Tensor([100.*correct/total]), win='train_acc', update='append', name='train_acc') print('Train Epoch: {} Loss: {:.6f} Acc: {:.6f}'.format( epoch, train_loss/len(trainloader), 100.*correct/total)) ``` 接下来,定义一个函数来测试模型: ```python def test(model, testloader, criterion, epoch, device, vis): model.eval() test_loss = 0.0 correct = 0 total = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(testloader): inputs, targets = inputs.to(device), targets.to(device) outputs = model(inputs) loss = criterion(outputs, targets) test_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() if batch_idx % 10 == 0: vis.line(X=torch.Tensor([epoch+batch_idx/len(testloader)]), Y=torch.Tensor([100.*correct/total]), win='test_acc', update='append', name='test_acc') print('Test Epoch: {} Loss: {:.6f} Acc: {:.6f}'.format( epoch, test_loss/len(testloader), 100.*correct/total)) ``` 接下来,定义主函数来调用以上函数: ```python def main(): vis = visdom.Visdom() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") trainloader, testloader = load_dataset() model = ResNet50().to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4) for epoch in range(100): train(model, trainloader, criterion, optimizer, epoch, device, vis) test(model, testloader, criterion, epoch, device, vis) torch.save(model.state_dict(), 'resnet50_cifar10.pth') with open('output.csv', mode='w') as file: writer = csv.writer(file) writer.writerow(['epoch', 'train_loss', 'train_acc', 'test_acc']) for epoch in range(100): train_loss = vis.line(Y=torch.Tensor([0]), win='train_loss', name='train_loss', update='none') train_acc = vis.line(Y=torch.Tensor([0]), win='train_acc', name='train_acc', update='none') test_acc = vis.line(Y=torch.Tensor([0]), win='test_acc', name='test_acc', update='none') writer.writerow([epoch+1, train_loss['Y'][-1], train_acc['Y'][-1], test_acc['Y'][-1]]) ``` 最后,运行主函数即可进行训练、测试、模型保存和输出数据到csv文件的操作: ```python if __name__ == '__main__': main() ``` 完整代码如下:

pytorchvggnet的实例

以下是一个使用PyTorch实现VGGNet的示例: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms # Define the VGGNet architecture class VGGNet(nn.Module): def __init__(self): super(VGGNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(128, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(256, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), ) self.avgpool = nn.AdaptiveAvgPool2d((7, 7)) self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 1000), ) def forward(self, x): x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x # Load the CIFAR-10 dataset transform = transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # Define the optimizer and loss function net = VGGNet() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # Train the network for epoch in range(2): # loop over the dataset multiple times running_loss = 0.0 for i, data in enumerate(trainloader, 0): # get the inputs; data is a list of [inputs, labels] inputs, labels = data # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.item() if i % 2000 == 1999: # print every 2000 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') # Test the network on the test dataset correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) ``` 此代码实现了一个VGGNet模型,用于分类CIFAR-10数据集的10个类别。该模型包含13个卷积层和3个全连接层,并使用交叉熵作为损失函数和随机梯度下降(SGD)作为优化器。在训练时,使用了两个epoch,并在每个mini-batch之后打印出运行损失。最后,测试了网络在测试数据集上的准确性。

相关推荐

最新推荐

recommend-type

java.lang.NoClassDefFoundError错误解决办法

主要介绍了java.lang.NoClassDefFoundError错误解决办法的相关资料,需要的朋友可以参考下
recommend-type

IEEE Std 802.15.4z-2020 IEEE Standard(原版非图片).pdf

IEEE Std 802.15.4z-2020 IEEE Standard for Low Rate Wireless Networks Amendment 1: Enhanced Ultra Wideband (UWB) Physical Layers(PHYs) and Associated Ranging Techniquesfinal(原版非图片) ...
recommend-type

基于Java实现的明日知道系统.zip

基于Java实现的明日知道系统
recommend-type

NX二次开发uc1653 函数介绍

NX二次开发uc1653 函数介绍,Ufun提供了一系列丰富的 API 函数,可以帮助用户实现自动化、定制化和扩展 NX 软件的功能。无论您是从事机械设计、制造、模具设计、逆向工程、CAE 分析等领域的专业人士,还是希望提高工作效率的普通用户,NX 二次开发 Ufun 都可以帮助您实现更高效的工作流程。函数覆盖了 NX 软件的各个方面,包括但不限于建模、装配、制图、编程、仿真等。这些 API 函数可以帮助用户轻松地实现自动化、定制化和扩展 NX 软件的功能。例如,用户可以通过 Ufun 编写脚本,自动化完成重复性的设计任务,提高设计效率;或者开发定制化的功能,满足特定的业务需求。语法简单易懂,易于学习和使用。用户可以快速上手并开发出符合自己需求的 NX 功能。本资源内容 提供了丰富的中英文帮助文档,可以帮助用户快速了解和使用 Ufun 的功能。用户可以通过资源中的提示,学习如何使用 Ufun 的 API 函数,以及如何实现特定的功能。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依