class activation(nn.ReLU): def __init__(self, dim, act_num=3, deploy=False): super(activation, self).__init__() self.deploy = deploy self.weight = torch.nn.Parameter(torch.randn(dim, 1, act_num*2 + 1, act_num*2 + 1)) self.bias = None self.bn = nn.BatchNorm2d(dim, eps=1e-6) self.dim = dim self.act_num = act_num weight_init.trunc_normal_(self.weight, std=.02)
时间: 2023-12-14 18:02:01 浏览: 75
这段代码定义了一个名为activation的类,继承自PyTorch中的ReLU类。其中,__init__()函数用于初始化类的参数。这个类接受3个参数:dim表示输入数据的通道数,act_num表示激活函数的数量,deploy表示是否需要进行训练。
在这个类的初始化函数中,首先调用了父类ReLU的初始化函数。然后,根据输入的参数,定义了一些类的成员变量。其中,weight表示激活函数的权重,是一个dim x 1 x (act_num*2 + 1) x (act_num*2 + 1)大小的张量。bias表示激活函数的偏置,为None。bn表示一个BatchNorm2d层,用于归一化输入数据。dim表示输入数据的通道数,act_num表示激活函数的数量。
最后,使用了一个名为weight_init的函数对权重进行了初始化,这个函数使用了一个截断正态分布进行初始化,其标准差为0.02。
相关问题
class CBOW(torch.nn.Module): def __init__(self, word_size, embedding_dim): super(CBOW, self).__init__() self.embeddings = nn.Embedding(word_size, embedding_dim) self.linear1 = nn.Linear(embedding_dim, 128) self.activation_function1 = nn.ReLU() self.linear2 = nn.Linear(128, word_size) self.activation_function2 = nn.LogSoftmax(dim = -1)
这段代码定义了一个CBOW(Continuous Bag-of-Words)模型的类CBOW。CBOW模型是一种用于自然语言处理的神经网络模型。
在__init__方法中,模型的初始化操作被定义。它接受两个参数:word_size和embedding_dim。word_size表示词汇表的大小,embedding_dim表示词向量的维度。
在模型的初始化过程中,首先创建了一个Embedding层self.embeddings,它将输入的单词索引映射为词向量。Embedding层的大小为(word_size, embedding_dim),其中word_size是词汇表的大小,embedding_dim是词向量的维度。
接下来,定义了两个线性层self.linear1和self.linear2。self.linear1将词向量映射到一个大小为128的隐藏层,然后通过激活函数self.activation_function1(这里使用了ReLU)进行非线性变换。self.linear2将隐藏层的输出映射为最终的预测结果,大小为word_size。最后,通过self.activation_function2(这里使用了LogSoftmax)对预测结果进行归一化。
这样,CBOW模型的架构就定义好了,可以用于训练和预测。
class GNNLayer(nn.Module): def __init__(self, in_feats, out_feats, mem_size, num_rels, bias=True, activation=None, self_loop=True, dropout=0.0, layer_norm=False): super(GNNLayer, self).__init__() self.in_feats = in_feats self.out_feats = out_feats self.mem_size = mem_size self.num_rels = num_rels self.bias = bias self.activation = activation self.self_loop = self_loop self.layer_norm = layer_norm self.node_ME = MemoryEncoding(in_feats, out_feats, mem_size) self.rel_ME = nn.ModuleList([ MemoryEncoding(in_feats, out_feats, mem_size) for i in range(self.num_rels) ]) if self.bias: self.h_bias = nn.Parameter(torch.empty(out_feats)) nn.init.zeros_(self.h_bias) if self.layer_norm: self.layer_norm_weight = nn.LayerNorm(out_feats) self.dropout = nn.Dropout(dropout)
这段代码定义了一个 `GNNLayer` 类,它是一个图神经网络(GNN)的层。让我来解释一下每个部分的作用:
- `in_feats`:输入特征的大小。
- `out_feats`:输出特征的大小。
- `mem_size`:内存大小。
- `num_rels`:关系类型的数量。
- `bias`:是否使用偏置项。
- `activation`:激活函数(如果有)。
- `self_loop`:是否使用自环(self-loop)边。
- `dropout`:Dropout 的概率。
- `layer_norm`:是否使用层归一化(layer normalization)。
接下来,具体说明 `GNNLayer` 类的初始化过程:
- 调用 `super()` 函数来初始化基类 `nn.Module`,并保存输入参数为类的属性。
- 创建了一个名为 `node_ME` 的 `MemoryEncoding` 实例,用于处理节点特征。
- 创建了一个长度为 `num_rels` 的 `nn.ModuleList`,其中每个元素是一个名为 `rel_ME` 的 `MemoryEncoding` 实例,用于处理关系特征。
- 如果设置了 `bias`,则创建了一个可学习的偏置项参数 `h_bias`。
- 如果设置了 `layer_norm`,则创建了一个层归一化的权重参数 `layer_norm_weight`。
- 创建了一个 Dropout 层,用于进行随机失活操作。
这段代码展示了如何初始化一个 GNN 层,并配置其中所需的各种参数和组件。
阅读全文