knn算法包含结果python代码

时间: 2023-08-06 15:11:55 浏览: 18
KNN算法是一种常见的分类算法,Python中可以使用scikit-learn库中的KNeighborsClassifier来实现。以下是一个简单的KNN分类器的代码示例: ``` python from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split # 加载数据集 iris = load_iris() # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3) # 创建KNN分类器 knn = KNeighborsClassifier(n_neighbors=3) # 训练模型 knn.fit(X_train, y_train) # 预测测试集 y_pred = knn.predict(X_test) # 输出预测结果 print(y_pred) ``` 在这个示例中,我们首先加载了Iris数据集,然后使用train_test_split函数将数据集分成训练集和测试集。接下来,我们创建了一个KNN分类器,并使用fit函数训练模型。最后,我们使用predict函数预测测试集,并输出预测结果。
相关问题

knn算法python代码

下面是一个使用 Scikit-learn 库实现 KNN 算法的 Python 代码示例: ```python from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 加载数据集 iris = load_iris() # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2) # 创建 KNN 模型,K=3 knn = KNeighborsClassifier(n_neighbors=3) # 拟合模型 knn.fit(X_train, y_train) # 预测 y_pred = knn.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', accuracy) ``` 注意,在实际使用 KNN 算法时,需要进行特征缩放等预处理,并且需要通过交叉验证等方法来选择最优的 K 值。

knn算法的nmi计算python代码

下面是KNN算法的NMI计算Python代码示例: ```python from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.neighbors import KNeighborsClassifier from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split # 生成一个分类数据集 X, y = make_classification(n_samples=1000, n_features=10, n_classes=5) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建KNN分类器 k = 5 knn = KNeighborsClassifier(n_neighbors=k) # 在训练集上拟合KNN分类器 knn.fit(X_train, y_train) # 在测试集上进行预测 y_pred = knn.predict(X_test) # 计算NMI nmi = normalized_mutual_info_score(y_test, y_pred) print("KNN算法的NMI得分为:", nmi) ``` 在上面的代码中,使用scikit-learn库生成一个分类数据集,然后将其划分为训练集和测试集。接下来,创建一个KNN分类器,并在训练集上进行拟合。最后,使用测试集进行预测,并计算NMI得分。

相关推荐

最新推荐

机器学习之KNN算法原理及Python实现方法详解

主要介绍了机器学习之KNN算法原理及Python实现方法,结合实例形式详细分析了机器学习KNN算法原理以及Python相关实现步骤、操作技巧与注意事项,需要的朋友可以参考下

基于python实现KNN分类算法

主要为大家详细介绍了基于python实现KNN分类算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

甲基环己烷,全球前4强生产商排名及市场份额.pdf

甲基环己烷,全球前4强生产商排名及市场份额

mingw64安装包(gcc/g++...)

MinGW,全称Minimalist GNU for Windows,是一个可自由使用和自由发布的Windows特定头文件和使用GNU工具集导入库的集合,允许你在GNU/Linux和Windows平台生成本地的Windows程序而不需要第三方C运行时(C Runtime)库。 MinGW是一组包含文件和端口库,其功能是允许控制台模式的程序使用微软的标准C运行时(C Runtime)库(MSVCRT.DLL)。这个库在所有的NT OS上有效,在所有的Windows 95发行版以上的Windows OS有效。使用基本运行时,你可以使用GCC写控制台模式的符合美国标准化组织(ANSI)程序,可以使用微软提供的C运行时(C Runtime)扩展,与基本运行时相结合,就可以有充分的权利既使用CRT(C Runtime)又使用Windows API功能。 MinGW又称mingw32,是将GCC编译器和GNU Binutils移植到Win32平台下的产物,包括一系列头文件(Win32 API)、库和可执行文件。

WMPMediaSharing.dll

WMPMediaSharing

市建设规划局gis基础地理信息系统可行性研究报告.doc

市建设规划局gis基础地理信息系统可行性研究报告.doc

"REGISTOR:SSD内部非结构化数据处理平台"

REGISTOR:SSD存储裴舒怡,杨静,杨青,罗德岛大学,深圳市大普微电子有限公司。公司本文介绍了一个用于在存储器内部进行规则表达的平台REGISTOR。Registor的主要思想是在存储大型数据集的存储中加速正则表达式(regex)搜索,消除I/O瓶颈问题。在闪存SSD内部设计并增强了一个用于regex搜索的特殊硬件引擎,该引擎在从NAND闪存到主机的数据传输期间动态处理数据为了使regex搜索的速度与现代SSD的内部总线速度相匹配,在Registor硬件中设计了一种深度流水线结构,该结构由文件语义提取器、匹配候选查找器、regex匹配单元(REMU)和结果组织器组成。此外,流水线的每个阶段使得可能使用最大等位性。为了使Registor易于被高级应用程序使用,我们在Linux中开发了一组API和库,允许Registor通过有效地将单独的数据块重组为文件来处理SSD中的文件Registor的工作原

要将Preference控件设置为不可用并变灰java完整代码

以下是将Preference控件设置为不可用并变灰的Java完整代码示例: ```java Preference preference = findPreference("preference_key"); // 获取Preference对象 preference.setEnabled(false); // 设置为不可用 preference.setSelectable(false); // 设置为不可选 preference.setSummary("已禁用"); // 设置摘要信息,提示用户该选项已被禁用 preference.setIcon(R.drawable.disabled_ico

基于改进蚁群算法的离散制造车间物料配送路径优化.pptx

基于改进蚁群算法的离散制造车间物料配送路径优化.pptx

海量3D模型的自适应传输

为了获得的目的图卢兹大学博士学位发布人:图卢兹国立理工学院(图卢兹INP)学科或专业:计算机与电信提交人和支持人:M. 托马斯·福吉奥尼2019年11月29日星期五标题:海量3D模型的自适应传输博士学校:图卢兹数学、计算机科学、电信(MITT)研究单位:图卢兹计算机科学研究所(IRIT)论文主任:M. 文森特·查维拉特M.阿克塞尔·卡里尔报告员:M. GWendal Simon,大西洋IMTSIDONIE CHRISTOPHE女士,国家地理研究所评审团成员:M. MAARTEN WIJNANTS,哈塞尔大学,校长M. AXEL CARLIER,图卢兹INP,成员M. GILLES GESQUIERE,里昂第二大学,成员Géraldine Morin女士,图卢兹INP,成员M. VINCENT CHARVILLAT,图卢兹INP,成员M. Wei Tsang Ooi,新加坡国立大学,研究员基于HTTP的动态自适应3D流媒体2019年11月29日星期五,图卢兹INP授予图卢兹大学博士学位,由ThomasForgione发表并答辩Gilles Gesquière�