TSP问题的nearest insertion求解器

时间: 2024-02-05 11:04:07 浏览: 19
最近插入法是一种启发式算法,用于解决旅行商问题(TSP)。它的基本思想是从初始路径开始,每次找到一个离当前路径最近的节点,并将其插入到路径中使得路径长度最小化。这个过程一直进行到所有节点都被插入到路径中为止。 下面是nearest insertion算法的步骤: 1. 选择一个起点节点,并将其添加到路径中。 2. 对于每个未访问的节点,计算它到路径上每个节点的距离,并找到距离最小的节点。 3. 将找到的节点插入到路径中,使得路径长度最小化。 4. 重复步骤2-3,直到所有节点都被插入到路径中为止。 5. 将最后一个节点与起点节点连接起来,形成一个完整的环路。 注意,nearest insertion算法并不保证得到最优解,但是通常能够得到比较好的解。此外,该算法的时间复杂度为O(n^2),其中n为节点数。
相关问题

Nearest Insertion python 实现 解决tsp

最近插入算法是解决TSP问题的有效算法之一。下面是一个基于Python的最近插入算法实现: ```python import math def nearest_insertion(points): # 计算任意两点之间的距离 distances = [[math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) for x2, y2 in points] for x1, y1 in points] # 选择起点 start_node = 0 unvisited_nodes = set(range(1, len(points))) # 选择与起点距离最近的点 current_node = min(unvisited_nodes, key=lambda x: distances[start_node][x]) unvisited_nodes.remove(current_node) # 将起点和当前节点加入路径 path = [start_node, current_node, start_node] # 直到所有节点都被访问 while unvisited_nodes: # 找到距离当前路径最近的未访问节点 current_distance = float('inf') for i in unvisited_nodes: for j in range(len(path) - 1): distance = distances[path[j]][i] + distances[i][path[j+1]] - distances[path[j]][path[j+1]] if distance < current_distance: current_distance = distance node_to_insert = i insert_position = j+1 # 将节点插入到路径中 path.insert(insert_position, node_to_insert) unvisited_nodes.remove(node_to_insert) return path, sum(distances[path[i]][path[i+1]] for i in range(len(points))) # 示例 points = [(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1)] print(nearest_insertion(points)) # ([0, 1, 4, 3, 5, 2, 0], 5.656854249492381) ``` 该算法的时间复杂度为 $O(n^2)$,因此对于较大的TSP问题可能不太适用。

c++TSP问题贪心策略求解

TSP问题是指在给定的n个城市之间,找到一条最短的路径,使得每个城市恰好被经过一次。这是一个NP难问题,没有找到有效的算法来解决。但是,可以使用贪心策略来近似解决问题。以下是一种基于贪心策略的TSP问题求解方法: 1. 随机选取一个城市作为起点。 2. 从该城市出发,选择与当前城市距离最近的下一个城市,并将其标记为已访问。 3. 重复第2步,直到所有城市都被访问。 4. 最后回到起点城市,形成一个完整的路径。 这种贪心策略也称为“最近邻算法”。虽然它不能保证得到最优解,但是在实际应用中,它的效果通常比较好,并且时间复杂度较低。如果需要更高精度的解,可以使用其他方法,如动态规划、遗传算法等。

相关推荐

最新推荐

recommend-type

城市配送TSP问题的LINGO求解

针对当前城市配送对象呈现多频次、小批量的特点,配送路线的合理安排问题日益突出,为了优化配送路线,建立了城市配送TSP问题的数学模型,并用LINGO软件进行编程,提出了一种通用的TSP的快速求解方法,通过实例验证...
recommend-type

TSP问题及LINGO求解技巧

TSP问题及LINGO求解技巧, 巡回旅行商问题(Traveling Salesman Problem,TSP),也称为货郎担问题。最早可以追溯到1759年Euler提出的骑士旅行问题。1948年,由美国兰德公司推动,TSP成为近代组合优化领域的一个典型...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

已知n个人(以编号0,1,2,3...n-1分别表示)围坐在一张圆桌周围。从编号为0的人开始报数1,数到m的那个人出列;他的下一个人又从1开始报数,数到m+1的那个人又出列(每次报数值加1);依此规律重复下去,直到圆桌周围的人全部出列。用递归方法解决

这个问题可以使用递归方法解决。下面是一个思路: 1. 定义一个函数,接收三个参数:n、m、i,表示还剩下n个人,每次数到m时出列,当前报数的人是i; 2. 如果n=1,返回i,即最后留下的那个人的编号; 3. 否则,计算出下一个出列的人的编号j,通过递归调用函数解决n-1个人的问题,其结果为k; 4. 如果k < j,即当前i之后出列的人的编号为k,需要将k转换为在i之前出列的编号,返回值为 k+(n-1); 5. 如果k>=j,即当前i之后出列的人的编号为k,返回值为 k-(j-1); 下面是对应的Python代码: ```python def josephus(n, m, i):