给出一个三输入三输出的resnet预测实例
时间: 2023-05-22 21:05:53 浏览: 82
人工智能-深度学习-ResNet网络-使用Pytorch实现ResNet50进行跨年龄人脸识别-Pytorch
5星 · 资源好评率100%
以下是一个简单的三输入三输出的resnet预测实例:
```
import tensorflow as tf
def residual_block(inputs):
x = tf.keras.layers.Conv2D(64, (3, 3), padding='same')(inputs)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.Conv2D(64, (3, 3), padding='same')(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Add()([x, inputs])
x = tf.keras.layers.Activation('relu')(x)
return x
input1 = tf.keras.layers.Input(shape=(256, 256, 3))
input2 = tf.keras.layers.Input(shape=(256, 256, 3))
input3 = tf.keras.layers.Input(shape=(256, 256, 3))
x1 = residual_block(input1)
x1 = residual_block(x1)
x1 = residual_block(x1)
x2 = residual_block(input2)
x2 = residual_block(x2)
x2 = residual_block(x2)
x3 = residual_block(input3)
x3 = residual_block(x3)
x3 = residual_block(x3)
output1 = tf.keras.layers.Conv2D(1, (1, 1))(x1)
output1 = tf.keras.layers.Activation('sigmoid')(output1)
output2 = tf.keras.layers.Conv2D(1, (1, 1))(x2)
output2 = tf.keras.layers.Activation('sigmoid')(output2)
output3 = tf.keras.layers.Conv2D(1, (1, 1))(x3)
output3 = tf.keras.layers.Activation('sigmoid')(output3)
model = tf.keras.models.Model(inputs=[input1, input2, input3], outputs=[output1, output2, output3])
```
这个模型有三个输入,每个输入是一张 256x256 的 RGB 图像。模型使用 resnet 的残差块来提取特征,然后在每个输出上都进行了 1x1 的卷积并进行 sigmoid 激活以获得相应的预测。
阅读全文