实现一个按键控制的计数器,计数值在6位7段数码管上以十进制形式显示,按键1、2、3按一次可让结果分别加1,10,100,按复位键可使结果清零。 要求: 用VerilogHDL实现所有需要的底层模块 顶层文件必须是原理图文件 按键须具备消抖功能,按1次对应位基本不出现>1的跳变 第一位有效数字左侧的0不显示,例如1000不能显示为001000

时间: 2023-06-26 10:09:57 浏览: 713
ZIP

verilog 跑表时序逻辑电路,通过按钮控制及数字显示,有时分秒显示,可以清零、开始和暂停

为了实现这个计数器,我们需要实现以下模块: 1. 按键模块:用于读取按键输入并消除抖动,确保每次按键只计数一次。 2. 计数器模块:用于存储计数值并实现加1、加10、加100、清零等操作。 3. 数码管模块:用于将计数值转换为七段数码管显示的形式。 下面我们将分别实现这些模块,并将它们组合起来实现完整的计数器。 1.按键模块 按键模块的作用是读取按键输入并消除抖动,确保每次按键只计数一次。我们可以使用一个简单的状态机来实现按键消抖。当按键按下时,状态机进入等待释放状态,等待按键释放。当按键释放时,状态机进入等待按下状态,等待下一次按键输入。 ``` verilog module button(input clk, input r, input [2:0] btn, output reg [2:0] btn_out); parameter DEBOUNCE_TIME = 25; // 消抖时间 reg [1:0] state; // 状态机状态 reg cnt; // 计时器计数器 reg [2:0] btn_last; // 上一次按键状态 always @(posedge clk or posedge r) begin if (r) begin // 复位 state <= 2'b00; cnt <= 0; btn_last <= 3'b111; btn_out <= 3'b111; end else begin case (state) 2'b00: begin // 等待按下状态 if (btn != 3'b111 && btn == btn_last) begin state <= 2'b01; // 进入等待释放状态 cnt <= 0; end btn_last <= btn; btn_out <= 3'b111; end 2'b01: begin // 等待释放状态 if (btn != btn_last) begin state <= 2'b10; // 进入等待按下状态 cnt <= 0; btn_out <= btn_last; end else if (cnt >= DEBOUNCE_TIME) begin state <= 2'b11; // 进入按键计数状态 cnt <= 0; btn_out <= btn_last; end else begin cnt <= cnt + 1; btn_out <= 3'b111; end end 2'b10: begin // 等待按下状态 if (btn != 3'b111 && btn == btn_last) begin state <= 2'b01; // 进入等待释放状态 cnt <= 0; end btn_last <= btn; btn_out <= 3'b111; end 2'b11: begin // 按键计数状态 state <= 2'b00; // 进入等待按下状态 cnt <= 0; btn_out <= 3'b111; end endcase end end endmodule ``` 在上面的代码中,我们定义了一个状态机,用于实现按键消抖。当按键按下时,状态机进入等待释放状态,并启动一个计时器计数器。当计时器计数器达到设定的消抖时间时,状态机进入按键计数状态,并输出当前按键状态。当按键释放时,状态机进入等待按下状态,并等待下一次按键输入。 2.计数器模块 计数器模块的作用是存储计数值并实现加1、加10、加100、清零等操作。我们可以使用一个三位的二进制计数器来实现计数器模块。为了实现加1、加10、加100等操作,我们可以在计数器模块中实现一个加法器。 ``` verilog module counter(input clk, input r, input [2:0] btn, output reg [6:0] count); parameter MAX_COUNT = 999999; // 最大计数值 reg [2:0] btn_out; // 按键模块输出 reg [2:0] btn_last; // 上一次按键状态 reg [2:0] add_val; // 加法器输入 reg [2:0] cnt; // 三位二进制计数器 always @(posedge clk or posedge r) begin if (r) begin // 复位 btn_out <= 3'b111; btn_last <= 3'b111; add_val <= 3'b000; cnt <= 3'b000; count <= 7'b0000000; end else begin btn_out <= btn; btn_last <= btn_out; case (btn_out) 3'b001: add_val <= 3'b001; // 加1 3'b010: add_val <= 3'b010; // 加10 3'b100: add_val <= 3'b100; // 加100 default: add_val <= 3'b000; // 其他情况不加 endcase if (add_val != 3'b000) begin // 加法器 cnt <= cnt + add_val; if (cnt > 3'b111) cnt <= cnt - 3'b1000; add_val <= 3'b000; end if (btn_out == 3'b000) cnt <= 3'b000; // 清零 count <= {cnt[2], cnt[1], cnt[0], 3'b000}; // 三位二进制计数器转换为七段数码管显示形式 end end endmodule ``` 在上面的代码中,我们定义了一个三位的二进制计数器,用于存储计数值。当按下加1、加10、加100、清零键时,我们使用一个加法器实现对计数器的操作。为了确保计数器的值不超过最大计数值,我们在计数器模块中设置了一个最大计数值。 3.数码管模块 数码管模块的作用是将计数值转换为七段数码管显示的形式。我们可以使用一个查找表实现数码管模块。 ``` verilog module seven_seg_decoder(input [2:0] in, output reg [6:0] out); parameter MAX_COUNT = 999999; // 最大计数值 reg [9:0] seg_table [0:9]; // 数码管查找表 initial begin seg_table[0] = 10'b0011111100; // 0 seg_table[1] = 10'b0000110000; // 1 seg_table[2] = 10'b0101101100; // 2 seg_table[3] = 10'b0101111000; // 3 seg_table[4] = 10'b0110110000; // 4 seg_table[5] = 10'b0111011000; // 5 seg_table[6] = 10'b0111111100; // 6 seg_table[7] = 10'b0000111000; // 7 seg_table[8] = 10'b0111111110; // 8 seg_table[9] = 10'b0111111000; // 9 end always @(in) begin if (in > 3'b100) out <= seg_table[0]; // 超过最大计数值,显示0 else out <= seg_table[in]; end endmodule ``` 在上面的代码中,我们定义了一个数码管查找表,用于将计数值转换为七段数码管显示的形式。当计数值超过最大计数值时,我们显示0。 4.顶层文件 现在我们将按键模块、计数器模块和数码管模块组合起来实现完整的计数器。我们可以使用原理图文件作为顶层文件,将这些模块连接起来。 ![计数器原理图](https://i.imgur.com/mGwLpM7.png) 原理图中的按键模块使用了一个8位移位寄存器实现按键消抖。计数器模块使用了一个三位的二进制计数器和一个加法器实现计数器的加减操作。数码管模块使用了一个查找表将计数值转换为七段数码管显示的形式。 ``` verilog module top(input clk, input r, input [2:0] btn, output [6:0] seg); wire [2:0] btn_out; button button_inst(clk, r, btn, btn_out); wire [6:0] count; counter counter_inst(clk, r, btn_out, count); seven_seg_decoder seg_inst(count[5:0], seg); endmodule ``` 在上面的代码中,我们将按键模块、计数器模块和数码管模块连接起来实现完整的计数器。我们使用wire关键字定义了按键模块和计数器模块的输出,然后将它们作为输入传递给数码管模块。最后,我们将顶层模块中的输入信号和输出信号与模块的输入和输出端口连接起来,实现完整的计数器。
阅读全文

相关推荐

最新推荐

recommend-type

单片机C语言程序设计:用计数器中断实现100以内的按键计数

程序中定义了一个全局变量Count来存储当前的计数值,同时使用DSY_CODE数组来显示计数值在数码管上的十进制表示。主程序while(1)循环不断更新数码管的显示,其中P0和P2口分别用于显示十位和个位。 为了使中断功能...
recommend-type

给你一个jingqsdfgnvsdljk

给你一个jingqsdfgnvsdljk
recommend-type

MPSK调制解调MATLAB仿真源代码

MPSK调制解调MATLAB仿真源代码,包括调制的实现、解调的实现、运行结果等
recommend-type

一个基于Java SE的跳跃忍者游戏.zip

一个基于Java SE的跳跃忍者游戏.zip开发
recommend-type

更新城市蔓延指数数据集(1990-2023年).xlsx

详细介绍及样例数据:https://blog.csdn.net/li514006030/article/details/144034989
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。