C/C++ API 调用实现一个求解无向图的哈密顿回路的程序
时间: 2024-02-25 10:57:29 浏览: 138
用递增算法求完全图的所有哈密顿回路
4星 · 用户满意度95%
好的,下面是一个使用 MiniSAT 求解器的 C++ 实现:
```c++
#include <cstdio>
#include <vector>
#include "minisat/core/Solver.h"
using namespace Minisat;
// 判断是否存在从 u 到 v 的边
bool hasEdge(const std::vector<std::vector<bool>>& graph, int u, int v) {
return graph[u][v] || graph[v][u];
}
// 构造布尔公式
void constructFormula(Solver& solver, const std::vector<std::vector<bool>>& graph) {
int n = graph.size();
std::vector<std::vector<Lit>> x(n, std::vector<Lit>(n));
// 构造变量
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
x[i][j] = mkLit(solver.newVar());
}
}
// 每个顶点恰好在一条回路中出现一次
for (int i = 0; i < n; i++) {
vec<Lit> clause;
for (int j = 0; j < n; j++) {
clause.push(x[i][j]);
}
solver.addClause(clause);
for (int j = 0; j < n; j++) {
for (int k = j + 1; k < n; k++) {
solver.addClause(~x[i][j], ~x[i][k]);
}
}
}
// 恰好存在一条边与每个顶点相连
for (int i = 0; i < n; i++) {
vec<Lit> clause;
for (int j = 0; j < n; j++) {
if (i != j && hasEdge(graph, i, j)) {
clause.push(x[i][j]);
}
}
solver.addClause(clause);
for (int j = 0; j < n; j++) {
for (int k = j + 1; k < n; k++) {
if (hasEdge(graph, i, j) && hasEdge(graph, i, k)) {
solver.addClause(~x[i][j], ~x[i][k]);
}
}
}
}
// 恰好存在一条回路经过每个顶点
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int k = j + 1; k < n; k++) {
if (hasEdge(graph, i, j) && hasEdge(graph, i, k)) {
solver.addClause(~x[i][j], ~x[k][i]);
solver.addClause(~x[j][i], ~x[k][i]);
}
}
}
}
}
// 解析结果,得到哈密顿回路的路径
std::vector<int> getPath(const Solver& solver, const std::vector<std::vector<bool>>& graph) {
int n = graph.size();
std::vector<std::vector<bool>> x(n, std::vector<bool>(n));
// 获取变量的取值
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (solver.modelValue(i * n + j) == l_True) {
x[i][j] = true;
}
}
}
// 构造路径
std::vector<int> path;
int cur = 0;
path.push_back(cur);
while (path.size() < n) {
for (int i = 0; i < n; i++) {
if (i != cur && x[cur][i] && hasEdge(graph, cur, i)) {
cur = i;
path.push_back(cur);
break;
}
}
}
return path;
}
// 求解哈密顿回路
std::vector<int> solveHamiltonianPath(const std::vector<std::vector<bool>>& graph) {
Solver solver;
constructFormula(solver, graph);
bool res = solver.solve();
if (res) {
return getPath(solver, graph);
} else {
return std::vector<int>();
}
}
int main() {
std::vector<std::vector<bool>> graph = {
{0, 1, 1, 0},
{1, 0, 1, 1},
{1, 1, 0, 1},
{0, 1, 1, 0}
};
std::vector<int> path = solveHamiltonianPath(graph);
if (path.empty()) {
printf("No Hamiltonian path found.\n");
} else {
printf("Hamiltonian path: ");
for (int i = 0; i < path.size(); i++) {
printf("%d ", path[i]);
}
printf("\n");
}
return 0;
}
```
这个程序使用 MiniSAT 求解器实现了求解哈密顿回路的功能。具体来说,它首先将无向图转化为布尔公式,然后调用 MiniSAT 求解器进行求解。如果求解器返回的结果合法,程序会解析结果得到哈密顿回路的路径。
阅读全文