MATLAB实现均漂移的函数
时间: 2023-11-07 13:56:43 浏览: 123
以下是MATLAB实现均漂移的函数:
```
function [outputImage] = meanShift(inputImage, spatialRadius, colorRadius, numIterations)
% Mean Shift Algorithm
% inputImage - input image
% spatialRadius - spatial radius of kernel
% colorRadius - color radius of kernel
% numIterations - number of iterations
% outputImage - output image
% Convert input image to double precision
inputImage = im2double(inputImage);
% Create output image of same size and type as input image
outputImage = zeros(size(inputImage), 'like', inputImage);
% Convert spatial and color radius to squared distance
spatialRadiusSq = spatialRadius^2;
colorRadiusSq = colorRadius^2;
% Iterate over all pixels in the input image
for i = 1:size(inputImage, 1)
for j = 1:size(inputImage, 2)
% Initialize mean shift vector and total weight
meanShiftVec = [0 0];
totalWeight = 0;
% Iterate over all pixels in the spatial and color neighborhood
for k = i-spatialRadius:i+spatialRadius
for l = j-spatialRadius:j+spatialRadius
% Compute distance between current pixel and center pixel
spatialDistSq = (k-i)^2 + (l-j)^2;
if (spatialDistSq > spatialRadiusSq)
continue;
end
% Compute distance between current pixel and center pixel in color space
colorDistSq = sum((inputImage(i,j,:) - inputImage(k,l,:)).^2);
if (colorDistSq > colorRadiusSq)
continue;
end
% Compute weight for current pixel
weight = exp(-0.5*spatialDistSq/spatialRadiusSq - 0.5*colorDistSq/colorRadiusSq);
% Update mean shift vector and total weight
meanShiftVec = meanShiftVec + weight*[k l];
totalWeight = totalWeight + weight;
end
end
% Compute mean shift vector
meanShiftVec = meanShiftVec/totalWeight;
% Iterate over specified number of iterations
for iter = 1:numIterations
% Compute distance between current pixel and mean shift vector
distSq = sum((meanShiftVec - [i j]).^2);
% If distance is zero, break out of loop
if (distSq == 0)
break;
end
% Initialize new mean shift vector and total weight
newMeanShiftVec = [0 0];
totalWeight = 0;
% Iterate over all pixels in the spatial and color neighborhood
for k = i-spatialRadius:i+spatialRadius
for l = j-spatialRadius:j+spatialRadius
% Compute distance between current pixel and center pixel
spatialDistSq = (k-i)^2 + (l-j)^2;
if (spatialDistSq > spatialRadiusSq)
continue;
end
% Compute distance between current pixel and center pixel in color space
colorDistSq = sum((inputImage(i,j,:) - inputImage(k,l,:)).^2);
if (colorDistSq > colorRadiusSq)
continue;
end
% Compute weight for current pixel
weight = exp(-0.5*spatialDistSq/spatialRadiusSq - 0.5*colorDistSq/colorRadiusSq);
% Update new mean shift vector and total weight
newMeanShiftVec = newMeanShiftVec + weight*[k l];
totalWeight = totalWeight + weight;
end
end
% Compute new mean shift vector
newMeanShiftVec = newMeanShiftVec/totalWeight;
% Compute distance between new and old mean shift vectors
distSq = sum((newMeanShiftVec - meanShiftVec).^2);
% If distance is less than threshold, break out of loop
if (distSq < 0.1)
break;
end
% Update mean shift vector
meanShiftVec = newMeanShiftVec;
end
% Assign output value to mean shift vector
outputImage(i,j,:) = inputImage(round(meanShiftVec(1)), round(meanShiftVec(2)),:);
end
end
end
```
该函数接受四个参数:输入图像、空间半径、颜色半径和迭代次数。它使用均值漂移算法对输入图像进行平滑处理,并返回平滑后的图像。
该函数首先将输入图像转换为双精度浮点数,并创建一个与输入图像大小和类型相同的输出图像。接下来,函数将空间和颜色半径转换为平方距离,并迭代所有像素。对于每个像素,函数计算其空间和颜色邻域中所有像素的权重,并使用这些权重计算平均漂移向量。然后,函数迭代指定的次数,并计算新的平均漂移向量。最后,函数将输出值赋值给平均漂移向量。
请注意,该函数使用两个嵌套的循环来迭代所有像素和邻域像素。这可以导致算法的运行时间较长,特别是对于大型图像。为了加速算法,可以使用更高效的数据结构,例如kd树或四叉树,来查找邻域像素。
阅读全文