Self-Attention、Scaled-Dot Product Attention等。
时间: 2024-05-19 09:16:35 浏览: 96
这些都是用于自然语言处理中的注意力机制。Self-Attention是指在处理一个句子或段落时,将该句子或段落中的每个词汇看作一个向量,并将这些向量通过一个计算得到每个向量在该句子或段落中的重要程度;而Scaled-Dot Product Attention是指在计算Self-Attention时,使用了一个缩放参数,可以帮助控制重要程度的范围,以便更好地理解上下文。
相关问题
pytorch的self-attention代码
PyTorch 自注意力(Self-Attention)通常用于Transformer模型中,它是一种计算机制,让每个输入元素(如文本的词)能够直接与其他所有元素交互,提取全局上下文信息。以下是一个简单的自注意力层的代码示例,在Transformer模块中,这通常是`MultiHeadAttention`部分:
```python
import torch
from torch import nn
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads, dropout=0.1):
super(MultiHeadAttention, self).__init__()
assert d_model % num_heads == 0
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
self.fc_q = nn.Linear(d_model, d_model) # Query linear layer
self.fc_k = nn.Linear(d_model, d_model) # Key linear layer
self.fc_v = nn.Linear(d_model, d_model) # Value linear layer
self.fc_out = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
def attention(self, query, key, value, mask=None):
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_dim) # Dot product scaled by head_dim
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9) # Mask padding positions
attn_weights = nn.functional.softmax(scores, dim=-1)
attn_output = torch.matmul(attn_weights, value)
return attn_output, attn_weights
def forward(self, query, key, value, mask=None):
batch_size = query.size(0)
q = self.fc_q(query) # (batch_size, seq_len, d_model)
k = self.fc_k(key) # (batch_size, seq_len, d_model)
v = self.fc_v(value) # (batch_size, seq_len, d_model)
q = q.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) # (batch_size, num_heads, seq_len, head_dim)
k = k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) # (batch_size, num_heads, seq_len, head_dim)
v = v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) # (batch_size, num_heads, seq_len, head_dim)
attn_output, attn_weights = self.attention(q, k, v, mask)
attn_output = attn_output.transpose(1, 2).contiguous() # back to (batch_size, seq_len, d_model*num_heads)
attn_output = self.fc_out(attn_output) # Apply final linear transformation
attn_output = self.dropout(attn_output)
return attn_output, attn_weights
```
keras实现multi-head self-attention代码
### 回答1:
以下是使用Keras实现multi-head self-attention的示例代码:
```python
import tensorflow as tf
from tensorflow import keras
class MultiHeadAttention(keras.layers.Layer):
def __init__(self, num_heads, d_model):
super(MultiHeadAttention, self).__init__()
self.num_heads = num_heads
self.d_model = d_model
assert d_model % self.num_heads == 0
self.depth = d_model // self.num_heads
self.wq = keras.layers.Dense(d_model)
self.wk = keras.layers.Dense(d_model)
self.wv = keras.layers.Dense(d_model)
self.dense = keras.layers.Dense(d_model)
def split_heads(self, x, batch_size):
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, v, k, q, mask):
batch_size = tf.shape(q)[0]
q = self.wq(q)
k = self.wk(k)
v = self.wv(v)
q = self.split_heads(q, batch_size)
k = self.split_heads(k, batch_size)
v = self.split_heads(v, batch_size)
scaled_attention, attention_weights = scaled_dot_product_attention(q, k, v, mask)
scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3])
concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model))
output = self.dense(concat_attention)
return output, attention_weights
def scaled_dot_product_attention(q, k, v, mask):
matmul_qk = tf.matmul(q, k, transpose_b=True)
dk = tf.cast(tf.shape(k)[-1], tf.float32)
scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
if mask is not None:
scaled_attention_logits += (mask * -1e9)
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1)
output = tf.matmul(attention_weights, v)
return output, attention_weights
```
在这个例子中,`MultiHeadAttention`是一个继承自Keras的`Layer`的类,它实现了multi-head self-attention。具体来说,`MultiHeadAttention`包括以下几个步骤:
1. 将输入的`q`、`k`、`v`通过三个全连接层(分别是`self.wq`、`self.wk`、`self.wv`)映射到`d_model`维空间。
2. 将映射后的`q`、`k`、`v`分别按照`num_heads`个头进行切分,并将切分后的张量进行维度重排,以便于后续计算。
3. 对切分后的`q`、`k`、`v`进行scaled dot-product attention操作,得到加权后的`v`,以及注意力权重。
4. 将加权后的`v`进行维度重排和拼接,并通过一个全连接层进行线性变换,得到最终的输出。
在实现过程中,需要用到`scaled_dot_product_attention`函数,该函数实现了scaled dot-product attention的计算。具体来说,它包括以下几个步骤:
1. 将`q`和`k`进行矩阵乘法,并除以$\sqrt{d_k}$得到相似度矩阵。
2. 如果有掩码,则将掩码中的位置设置为$-\infty$,以便在softmax之后得到0的注意力权重。
3. 对相似度矩阵进行softmax操作,得到注意力权重。
4. 将注意力权重和`v`进行矩阵乘法,得到加权后的`v`。
需要注意的是,这个实现中的`mask`参数是可选的,如果没有传入掩码,则不进行掩码操作。
### 回答2:
Keras是一个开源的深度学习库,可以用来构建和训练各种类型的神经网络模型。在Keras中实现多头自注意力机制(Multi-head Self-Attention)需要用到自定义层(Custom Layer)来定义注意力机制和多头机制。
以下是一个使用Keras实现Multi-head Self-Attention的代码示例:
```python
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
class MultiHeadSelfAttention(keras.layers.Layer):
def __init__(self, embed_dim, num_heads=8):
super(MultiHeadSelfAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
if embed_dim % num_heads != 0:
raise ValueError("Embedding dimension must be divisible by number of heads.")
self.projection_dim = embed_dim // num_heads
self.query_dense = layers.Dense(embed_dim)
self.key_dense = layers.Dense(embed_dim)
self.value_dense = layers.Dense(embed_dim)
self.combine_heads = layers.Dense(embed_dim)
def attention(self, query, key, value):
score = tf.matmul(query, key, transpose_b=True)
dim_key = tf.cast(tf.shape(key)[-1], tf.float32)
scaled_score = score / tf.math.sqrt(dim_key)
weights = tf.nn.softmax(scaled_score, axis=-1)
output = tf.matmul(weights, value)
return output, weights
def separate_heads(self, x, batch_size):
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.projection_dim))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, inputs):
batch_size = tf.shape(inputs)[0]
query = self.query_dense(inputs)
key = self.key_dense(inputs)
value = self.value_dense(inputs)
query = self.separate_heads(query, batch_size)
key = self.separate_heads(key, batch_size)
value = self.separate_heads(value, batch_size)
attention, weights = self.attention(query, key, value)
attention = tf.transpose(attention, perm=[0, 2, 1, 3])
concat_attention = tf.reshape(attention, (batch_size, -1, self.embed_dim))
output = self.combine_heads(concat_attention)
return output
# 测试代码
embed_dim = 64
num_heads = 4
inputs = keras.Input(shape=(32, embed_dim))
attention_layer = MultiHeadSelfAttention(embed_dim, num_heads)
outputs = attention_layer(inputs)
print(outputs.shape)
```
以上代码定义了一个`MultiHeadSelfAttention`类来实现多头自注意力机制。该类继承自Keras层(`keras.layers.Layer`),并在`call`方法中定义了注意力机制的计算流程。在测试代码中,我们输入形状为`(batch_size, seq_length, embed_dim)`的输入张量,并给定了嵌入维度(`embed_dim`)和注意力头数(`num_heads`)。最终的输出形状也是`(batch_size, seq_length, embed_dim)`。
希望以上代码对你有所帮助!
阅读全文