帮我生成用蚁群算法解决旅行商问题的python代码
时间: 2023-03-01 21:03:47 浏览: 109
好的,我来为您生成一个用蚁群算法解决旅行商问题的python代码。
```
import numpy as np
import random
class AntColony:
def __init__(self, cities, num_ants, iterations):
self.cities = cities
self.num_ants = num_ants
self.iterations = iterations
self.pheromone_matrix = np.ones((len(cities), len(cities))) / len(cities)
self.distance_matrix = self.get_distance_matrix(cities)
self.best_path = None
self.best_path_distance = float('inf')
def get_distance_matrix(self, cities):
matrix = np.zeros((len(cities), len(cities)))
for i in range(len(cities)):
for j in range(len(cities)):
if i != j:
matrix[i][j] = np.linalg.norm(cities[i] - cities[j])
return matrix
def update_pheromone_matrix(self, ants):
for i, ant in enumerate(ants):
for j in range(len(ant.path) - 1):
self.pheromone_matrix[ant.path[j]][ant.path[j+1]] += 1 / ant.distance
self.pheromone_matrix[ant.path[j+1]][ant.path[j]] += 1 / ant.distance
self.pheromone_matrix = (1 - self.rho) * self.pheromone_matrix
def next_city(self, ant):
prob = np.zeros(len(self.cities))
total = 0
for i, visited in enumerate(ant.visited):
if not visited:
prob[i] = (self.pheromone_matrix[ant.current][i] ** self.alpha) * ((1 / self.distance_matrix[ant.current][i]) ** self.beta)
total += prob[i]
for i in range(len(prob)):
prob[i] /= total
return np.random.choice(len(self.cities), p=prob)
def run(self, alpha=1, beta=5, rho=0.5):
self.alpha = alpha
self.beta = beta
self.rho = rho
for iteration in range(self.iterations):
ants = [Ant(self) for i in range(self.num_ants)]
for ant in ants:
while len(ant.path) != len(self.cities):
next_city = self.next_city(ant)
ant.visited[next_city] = True
ant.path.append(next_city)
ant.distance += self.distance_matrix[ant.current][next_city]
ant.current = next_city
ant.distance
阅读全文