写一个使用tensorrt加速YOLOv3-tiny的Python程序
时间: 2023-04-08 12:00:37 浏览: 304
YOLO的tensorrt加速
我可以回答这个问题。以下是一个使用TensorRT加速YOLOv3-tiny的Python程序的示例:
```python
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
import numpy as np
import cv2
# Load the TensorRT engine
engine_file_path = 'yolov3-tiny.engine'
with open(engine_file_path, 'rb') as f:
engine_data = f.read()
engine = trt.lite.Engine(None, engine_data)
# Create a TensorRT context
context = engine.create_execution_context()
# Allocate memory for input and output tensors
input_shape = (3, 416, 416)
input_size = np.product(input_shape) * np.dtype(np.float32).itemsize
input_buf = cuda.mem_alloc(input_size)
output_shape = (1, 255, 13, 13)
output_size = np.product(output_shape) * np.dtype(np.float32).itemsize
output_buf = cuda.mem_alloc(output_size)
# Load an image and preprocess it
image_file_path = 'image.jpg'
image = cv2.imread(image_file_path)
image = cv2.resize(image, (416, 416))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = image.transpose((2, 0, 1))
image = image.astype(np.float32) / 255.0
image = np.ascontiguousarray(image)
# Copy the input tensor to the GPU
cuda.memcpy_htod(input_buf, image)
# Run inference
context.execute_v2(bindings=[int(input_buf), int(output_buf)])
# Copy the output tensor from the GPU
output = np.empty(output_shape, dtype=np.float32)
cuda.memcpy_dtoh(output, output_buf)
# Postprocess the output tensor
output = output.reshape((1, 3, 85, 13, 13))
boxes = output[:, :2, :, :, :] * 32.0
confidences = output[:, 2:3, :, :, :]
class_probs = output[:, 3:, :, :, :]
scores = confidences * class_probs
scores = scores.reshape((1, 255, -1))
scores = scores[0]
scores = scores[scores[:, 0] > 0.5]
boxes = boxes.reshape((1, 2, -1))
boxes = boxes[0]
boxes = boxes[:, :, boxes[0, :, 0] > 0.5]
boxes = boxes.transpose((1, 0, 2))
boxes = boxes.reshape((-1, 4))
boxes[:, 0] -= boxes[:, 2] / 2
boxes[:, 1] -= boxes[:, 3] / 2
boxes[:, 2] += boxes[:, 0]
boxes[:, 3] += boxes[:, 1]
boxes = boxes.astype(np.int32)
scores = scores[scores[:, 0].argsort()[::-1]]
scores = scores[:100]
boxes = boxes[:100]
for box, score in zip(boxes, scores):
x1, y1, x2, y2 = box
label = np.argmax(score[1:]) + 1
confidence = score[label]
print(f'Label: {label}, Confidence: {confidence}, Box: ({x1}, {y1}, {x2}, {y2})')
```
这个程序使用TensorRT加速了YOLOv3-tiny的推理过程,可以在GPU上快速地检测图像中的物体。
阅读全文