输入大小为45×5,输出大小为45×1,输入变量为五维,输出变量为一维,用上述已知数据训练一个PCE代理模型,包括后续的预测、可视化和不确定性量化,请给出代码

时间: 2024-02-25 10:56:30 浏览: 27
好的,以下是一个使用UQLab软件包训练PCE代理模型的示例代码,包括预测、可视化和不确定性量化: ```matlab %% 数据准备 % 随机生成45个输入变量的取值 Xtrain = uq_StdNormalRnd(45,5); % 计算对应的输出变量 Ytrain = myModel(Xtrain); %% PCE模型训练 % 定义PCE模型的输入变量和输出变量 myInput.Marginals.Type = 'Gaussian'; myInput.Marginals.Parameters = [0 1; 0 1; 0 1; 0 1; 0 1]; myOutput.Marginals.Type = 'Gaussian'; % 定义PCE模型的参数 MetaOpts.Type = 'Metamodel'; MetaOpts.MetaType = 'PCE'; MetaOpts.Degree = 2; % 多项式拟合的最高次数 MetaOpts.Method = 'OLS'; % 拟合方法 % 训练PCE模型 myPCE = uq_createModel(struct('input', myInput, 'output', myOutput, 'metaopts', MetaOpts), 'X', Xtrain, 'Y', Ytrain); %% 模型预测 % 随机生成一组输入变量的取值 Xtest = uq_StdNormalRnd(1,5); % 使用PCE模型预测对应的输出变量值 [Ytest, Ypred] = uq_evalModel(Xtest, myPCE); %% 可视化 % 绘制输入变量与输出变量之间的关系 uq_figure uq_plot3D(Xtrain, Ytrain) xlabel('X1') ylabel('X2') zlabel('X3') title('Input-Output Relationship') % 绘制模型预测结果的三维图像 [X1,X2] = meshgrid(-3:0.1:3,-3:0.1:3); X3 = zeros(size(X1)); X4 = zeros(size(X1)); X5 = zeros(size(X1)); Xtest = [X1(:) X2(:) X3(:) X4(:) X5(:)]; Ypred = uq_evalModel(Xtest, myPCE); Ypred = reshape(Ypred, size(X1)); uq_figure surf(X1,X2,Ypred) xlabel('X1') ylabel('X2') zlabel('Y') title('PCE Prediction') %% 不确定性量化 % 随机生成N组输入变量的取值 N = 100; Xsamples = uq_StdNormalRnd(N,5); % 使用PCE模型预测对应的输出变量值 Ysamples = uq_evalModel(Xsamples, myPCE); % 计算输出变量的置信区间 CI = uq_PCE_CI(myPCE, Xsamples, 0.95); % 绘制置信区间 uq_figure uq_plot(Ysamples, CI) xlabel('Sample Number') ylabel('Y') title('Confidence Interval') ``` 需要注意的是,代码中的`myModel`函数需要根据实际问题进行定义,用于计算输入变量和输出变量之间的真实关系。同时,需要安装UQLab软件包并正确配置MATLAB环境,才能运行以上代码。

相关推荐

最新推荐

recommend-type

Lua判断变量是否为数字、字符串是否可以转换为数字等

主要介绍了Lua判断变量是否为数字、字符串是否可以转换为数字等,本文讲解了Lua 判断是字符还是数字的方法、Lua判断数字的方法、判断可否转换为数字的方法、判断并且准备一个初值的方法,需要的朋友可以参考下
recommend-type

python练习题 :用户任意输入10个整数到列表中,然后由大到小排列并输出。

5.如果想测试变量的类型,可以使用___type()_____来实现。 6.8.57E5表示的数是___8.57*10^5_______。 7.字符串是一种表示__文本的______数据的类型。 8.像双引号这样的特殊符号,需要对它进行__文本内容_______输出...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

ISP图像工程师需要掌握的知识技能

ISP图像工程师需要掌握一些相关的知识和技能,包括: 1. 图像处理的基本知识和方法,包括图像增强、滤波、分割、降噪等 2. 熟练掌握一门编程语言,可以使用这门语言实现图像处理算法,常用的编程语言包括C++、Python、Matlab等 3. 了解图像传感器的工作原理和特性,以及图像传感器的校准和校正 4. 熟悉图像处理的软件工具,包括Photoshop、GIMP等 5. 了解图像处理硬件系统的基本知识,包括DSP、FPGA、GPU等 6. 具有良好的数学功底,能够利用数学方法解决图像处理中的问题 7. 具有较强的解决问题的能力,能够独立分析和解决实际问题 8. 具有较强的沟通