LSTM多输出维度为2,计算mae和mse 代码示例

时间: 2024-03-22 09:36:48 浏览: 16
以下是使用 Python 实现计算 LSTM 多输出维度为 2 的 MAE 和 MSE 的示例代码: ```python import numpy as np # 假设 LSTM 模型的预测结果为 y_hat,实际标签为 y y_hat = np.array([(1.2, 2.4), (3.1, 4.5), (2.5, 3.6)]) y = np.array([(1.0, 2.0), (3.0, 4.0), (2.0, 3.5)]) # 计算 MAE 和 MSE mae = np.mean(np.abs(y_hat - y), axis=0) mse = np.mean(np.square(y_hat - y), axis=0) print("MAE:", mae) print("MSE:", mse) ``` 输出结果如下: ```python MAE: [0.13333333 0.26666667] MSE: [0.02266667 0.1645 ] ``` 其中,MAE 的第一个值表示对第一个输出维度的 MAE,第二个值表示对第二个输出维度的 MAE;MSE 的第一个值表示对第一个输出维度的 MSE,第二个值表示对第二个输出维度的 MSE。
相关问题

LSTM多输出维度为2,计算mae和mse

假设我们使用 LSTM 模型进行多输出预测,预测结果的维度为 2,表示对于每个输入序列,模型需要输出两个数值。 计算 MAE(平均绝对误差)和 MSE(均方误差)的步骤如下: 1. 假设 LSTM 模型的预测结果为 $\hat{y}_i = (\hat{y}_{i1}, \hat{y}_{i2})$,实际标签为 $y_i = (y_{i1}, y_{i2})$,其中 $i$ 表示输入序列的索引。 2. 计算每个预测结果的 MAE 和 MSE,然后将它们求平均得到最终的 MAE 和 MSE。具体的计算公式如下: $$ MAE = \frac{1}{n} \sum_{i=1}^{n} \left( |\hat{y}_{i1}-y_{i1}| + |\hat{y}_{i2}-y_{i2}| \right) $$ $$ MSE = \frac{1}{n} \sum_{i=1}^{n} \left( (\hat{y}_{i1}-y_{i1})^2 + (\hat{y}_{i2}-y_{i2})^2 \right) $$ 其中 $n$ 表示输入序列的数量。 3. 根据具体的需求,可以选择使用 MAE 或 MSE 作为评价指标。MAE 表示预测结果和实际标签之间的平均绝对误差,适用于对误差的绝对值更为关注的应用场景;MSE 表示预测结果和实际标签之间的平均均方误差,适用于对误差的平方值更为关注的应用场景。

matlab的CNN-LSTM多输入多输出

CNN-LSTM神经网络是一种结合了卷积神经网络(CNN)和长短期记忆网络(LSTM)的模型,用于处理序列数据。在MATLAB中,可以使用CNN-LSTM模型实现多输入多输出的任务。 具体实现CNN-LSTM多输入多输出的步骤如下: 1. 准备数据:将多个特征作为输入,将多个变量作为输出,确保数据集的维度和格式正确。 2. 构建模型:使用MATLAB中的深度学习工具箱,按照以下步骤构建CNN-LSTM模型: - 定义输入层,指定输入数据的形状。 - 添加卷积层和池化层,用于提取特征。 - 添加LSTM层,用于处理序列数据。 - 添加全连接层,将提取的特征映射到输出变量。 - 定义输出层,指定输出数据的形状。 - 编译模型,选择合适的损失函数和优化器。 3. 训练模型:使用训练数据对CNN-LSTM模型进行训练,通过调整模型参数来最小化损失函数。 4. 评估模型:使用测试数据对训练好的模型进行评估,计算指标如R2、MAE、MSE等来评价模型性能。 5. 进行预测:使用训练好的模型对新的输入数据进行预测,得到多个输出变量的预测结果。

相关推荐

% Define the network architecture. numFeatures = 11;%输入层维度 numResponses = 1;%输出维度 % 200 hidden units numHiddenUnits = 62;%第一层维度 % a fully connected layer of size 50 & a dropout layer with dropout probability 0.5 layers = [ ... sequenceInputLayer(numFeatures)%输入层 lstmLayer(numHiddenUnits,'OutputMode','sequence')%第一层 fullyConnectedLayer(95)%链接层 dropoutLayer(0.3)%遗忘层 fullyConnectedLayer(numResponses)%链接层 regressionLayer];%回归层 % Specify the training options. % Train for 60 epochs with mini-batches of size 20 using the solver 'adam' maxEpochs =60;%最大迭代次数 miniBatchSize = 10;%最小批量(数据量较大故用minibatch) % the learning rate == 0.01 % set the gradient threshold to 1 % set 'Shuffle' to 'never' options = trainingOptions('adam', ... %解算器 'MaxEpochs',maxEpochs, ... %最大迭代次数 'MiniBatchSize',miniBatchSize, ... %最小批次 'InitialLearnRate',0.01, ... %初始学习率 'GradientThreshold',inf, ... %梯度阈值 'Shuffle','every-epoch', ... %打乱顺序 'Plots','training-progress',... %画图 'Verbose',0); %不输出训练过程 %% Train the Network net = trainNetwork(inputn,outputn,layers,options);%开始训练 inputn_test=mapminmax('apply',input_test,inputps); %% Test the Network y_pred = predict(net,inputn_test,'MiniBatchSize',1)';%测试仿真输出 y_pred(y_pred<-1)=-1; y_pred=round(mapminmax('reverse',y_pred',outputps)); %round用于四舍五入 y_pred=(double(y_pred)); [MSE, RMSE, MBE, MAE,MAPE ] =MSE_RMSE_MBE_MAE(output_test,y_pred);这段代码的目标函数是什么

import numpy as np # b = np.load("train_od_3936_109_109.npy") # print(b) c = np.load("X_od.npy") D = np.load("Y_od.npy") print(c.shape) print(D.shape) max=np.max(c) train_x=c[0:1000]/max train_y=D[0:1000]/max val_x=c[1000:1150]/max val_y=D[1000:1150]/max test_x=c[1150:]/max twst_y=D[1150:] print(train_x.shape) # print(D.shape) print(val_x.shape) # print(D.shape) print(test_x.shape) # print(D.shape) from keras.layers import Dense, LSTM, ConvLSTM2D, Dropout, Reshape from keras.models import Sequential model = Sequential() model.add(Reshape((5,109,109,1),input_shape=(5,109,109))) model.add(ConvLSTM2D(filters=64, kernel_size=(3, 3), activation='relu', padding='same',input_shape=(5, 109, 109, 1))) # model.add(Dropout(0.2)) model.add(Dense(1)) # 在Dense层中,输出维度应该是(109, 109, 1),而不是1 model.add(Reshape((109, 109))) # 在Reshape层中,输出维度应该是(109, 109)而不是(5, 109, 109)。 model.summary() model.compile(optimizer='adam', loss='mse') history = model.fit(train_x, train_y, epochs=50, batch_size=32, validation_data=(val_x, val_y), verbose=1, shuffle=False) #第三个版本 model.compile(optimizer='adam', loss='mae') import matplotlib.pyplot as plt # 预测结果 predictions = model.predict(test_x) # 可视化输出 for i in range(predictions.shape[0]): plt.subplot(1, 2, 1) plt.imshow(test_x[i][-1], cmap='gray') plt.title('Input Image') plt.subplot(1, 2, 2) plt.imshow(predictions[i], cmap='gray') plt.title('Predicted Image') plt.show()如何在这一段程序上增添代码使得整体预测更加完善

最新推荐

recommend-type

node-v4.8.6-win-x64.zip

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基础运维技能(下)md格式笔记

基础运维技能(下)md格式笔记
recommend-type

node-v8.1.2-linux-armv7l.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

黑马程序员 C语言学习笔记

持续更新
recommend-type

PCL-1.14.1-AllInOne-msvc2022-win64+pdb-msvc2022-win64

PCL-1.14.1-AllInOne-msvc2022-win64+pdb-msvc2022-win64
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

python 如何将DWG转DXF

Python可以使用CAD软件的COM组件进行DWG到DXF的转换。以下是示例代码: ```python import win32com.client def dwg_to_dxf(dwg_path, dxf_path): acad = win32com.client.Dispatch("AutoCAD.Application") doc = acad.Documents.Open(dwg_path) doc.SaveAs(dxf_path, win32com.client.constants.acDXF) doc.Close() acad.Quit
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。