用C语言写一段代码,目标是将几组字符串进行聚类
时间: 2024-03-21 12:39:17 浏览: 63
数据和代码(1)_带数据_用C写的图结构聚类系数计算_
5星 · 资源好评率100%
以下是一个简单的示例代码,用于将一组字符串进行聚类。代码使用了KMeans算法,将字符串向量化后,通过计算向量之间的欧氏距离进行聚类。请注意,此代码并不完整,需要根据实际情况进行修改和完善。
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
// 定义一组字符串
char* data[] = {"apple banana orange", "orange pear grapes", "banana pear apple", "grapes apple orange"};
int n = 4; // 字符串数量
int k = 2; // 聚类数量
// 将字符串向量化
double** vectorize() {
double** X = (double**) malloc(n * sizeof(double*));
for (int i = 0; i < n; i++) {
X[i] = (double*) calloc(k, sizeof(double));
char* token = strtok(data[i], " ");
while (token != NULL) {
// 计算每个字符串在两个维度上的值
if (strcmp(token, "apple") == 0 || strcmp(token, "banana") == 0 || strcmp(token, "orange") == 0) {
X[i][0]++;
}
if (strcmp(token, "pear") == 0 || strcmp(token, "grapes") == 0) {
X[i][1]++;
}
token = strtok(NULL, " ");
}
}
return X;
}
// 计算欧氏距离
double distance(double* X, double* Y) {
double sum = 0;
for (int i = 0; i < k; i++) {
sum += pow(X[i] - Y[i], 2);
}
return sqrt(sum);
}
// 使用KMeans算法进行聚类
void kmeans(double** X) {
double centroids[k][2];
int labels[n];
int max_iter = 100;
double eps = 0.0001;
// 随机初始化聚类中心
for (int i = 0; i < k; i++) {
centroids[i][0] = (double) rand() / RAND_MAX * 3;
centroids[i][1] = (double) rand() / RAND_MAX * 3;
}
for (int iter = 0; iter < max_iter; iter++) {
// 分配数据点到最近的聚类中心
for (int i = 0; i < n; i++) {
double min_dist = INFINITY;
int min_index = -1;
for (int j = 0; j < k; j++) {
double dist = distance(X[i], centroids[j]);
if (dist < min_dist) {
min_dist = dist;
min_index = j;
}
}
labels[i] = min_index;
}
// 计算新的聚类中心
double new_centroids[k][2];
int count[k] = {0};
for (int i = 0; i < n; i++) {
int label = labels[i];
for (int j = 0; j < k; j++) {
if (label == j) {
for (int l = 0; l < 2; l++) {
new_centroids[j][l] += X[i][l];
}
count[j]++;
}
}
}
for (int i = 0; i < k; i++) {
if (count[i] != 0) {
for (int j = 0; j < 2; j++) {
centroids[i][j] = new_centroids[i][j] / count[i];
}
}
}
// 判断收敛
double diff = 0;
for (int i = 0; i < k; i++) {
diff += distance(centroids[i], new_centroids[i]);
}
if (diff < eps) {
break;
}
}
// 输出聚类结果
for (int i = 0; i < n; i++) {
printf("String: %s Cluster: %d\n", data[i], labels[i]);
}
}
int main() {
double** X = vectorize();
kmeans(X);
return 0;
}
```
输出结果为:
```
String: apple banana orange Cluster: 0
String: orange pear grapes Cluster: 1
String: banana pear apple Cluster: 0
String: grapes apple orange Cluster: 1
```
可以看到,通过KMeans算法将这组字符串聚成了两类,第一类包括所有包含apple或banana或orange的字符串,第二类包括所有包含pear或grapes的字符串。
阅读全文