如何用python实现ai五子棋
时间: 2024-02-02 20:05:31 浏览: 108
您可以使用Python编写一个五子棋博弈程序,使用机器学习算法和强化学习算法训练AI来玩五子棋。其中,使用深度学习框架,如TensorFlow或PyTorch来实现模型训练。需要注意的是,AI五子棋的编写需要涵盖各个方面,如状态表示、动作选择、策略评估、胜率预测等,您可以参考一些开源项目来进行实现。
相关问题
python实现五子棋AI
作为AI,需要实现以下功能:
1. 判断胜负:判断当前局面是否出现五子连珠的情况,如果是则结束游戏。
2. 估值函数:评估当前局面的优劣,给出一个分数。这个分数需要考虑当前棋子的数量、棋型、棋子的位置等因素。
3. 搜索算法:搜索下一步的最优落子位置。可以使用alpha-beta剪枝算法。
具体实现代码如下:
```python
import random
class Board:
def __init__(self, size=15):
self.size = size
self.board = [[0] * size for _ in range(size)]
self.current_player = 1
def move(self, x, y):
self.board[x][y] = self.current_player
self.current_player = 3 - self.current_player
def is_valid_move(self, x, y):
return x >= 0 and x < self.size and y >= 0 and y < self.size and self.board[x][y] == 0
def get_winner(self):
for i in range(self.size):
for j in range(self.size):
if self.board[i][j] == 0:
continue
if j + 4 < self.size and self.board[i][j] == self.board[i][j+1] == self.board[i][j+2] == self.board[i][j+3] == self.board[i][j+4]:
return self.board[i][j]
if i + 4 < self.size and self.board[i][j] == self.board[i+1][j] == self.board[i+2][j] == self.board[i+3][j] == self.board[i+4][j]:
return self.board[i][j]
if i + 4 < self.size and j + 4 < self.size and self.board[i][j] == self.board[i+1][j+1] == self.board[i+2][j+2] == self.board[i+3][j+3] == self.board[i+4][j+4]:
return self.board[i][j]
if i + 4 < self.size and j - 4 >= 0 and self.board[i][j] == self.board[i+1][j-1] == self.board[i+2][j-2] == self.board[i+3][j-3] == self.board[i+4][j-4]:
return self.board[i][j]
return 0
def get_score(self, player):
score = 0
for i in range(self.size):
for j in range(self.size):
if self.board[i][j] == player:
score += self.evaluate_position(i, j)
elif self.board[i][j] == 3 - player:
score -= self.evaluate_position(i, j)
return score
def evaluate_position(self, x, y):
score = 0
for dx, dy in [(0, 1), (1, 0), (1, 1), (1, -1)]:
score += self.evaluate_direction(x, y, dx, dy)
return score
def evaluate_direction(self, x, y, dx, dy):
score = 0
player = self.board[x][y]
for i in range(1, 5):
nx, ny = x + i * dx, y + i * dy
if nx < 0 or nx >= self.size or ny < 0 or ny >= self.size:
break
if self.board[nx][ny] == player:
score += 1
elif self.board[nx][ny] == 0:
pass
else:
score -= 1
break
return score
class AI:
def __init__(self, player, depth=3):
self.player = player
self.depth = depth
def get_move(self, board):
_, move = self.alpha_beta(board, self.depth, float("-inf"), float("inf"), self.player)
return move
def alpha_beta(self, board, depth, alpha, beta, player):
if depth == 0:
return board.get_score(self.player), None
moves = self.generate_moves(board)
if not moves:
return board.get_score(self.player), None
best_move = None
if player == self.player:
for move in moves:
board.move(*move)
score, _ = self.alpha_beta(board, depth - 1, alpha, beta, 3 - player)
board.move(*move[::-1])
if score > alpha:
alpha = score
best_move = move
if alpha >= beta:
break
return alpha, best_move
else:
for move in moves:
board.move(*move)
score, _ = self.alpha_beta(board, depth - 1, alpha, beta, 3 - player)
board.move(*move[::-1])
if score < beta:
beta = score
best_move = move
if alpha >= beta:
break
return beta, best_move
def generate_moves(self, board):
moves = []
for i in range(board.size):
for j in range(board.size):
if board.is_valid_move(i, j):
moves.append((i, j))
random.shuffle(moves)
return moves
board = Board()
ai = AI(1)
while True:
print(board.board)
winner = board.get_winner()
if winner:
print("Winner is player", winner)
break
if board.current_player == 1:
x, y = map(int, input("Please input your move: ").split())
if board.is_valid_move(x, y):
board.move(x, y)
else:
print("Invalid move!")
continue
else:
move = ai.get_move(board)
board.move(*move)
```
用python代码实现五子棋
好的,以下是Python实现五子棋的代码:
```
import numpy as np
# 定义棋盘大小
BOARD_SIZE = 15
class Board:
def __init__(self):
self.board = np.zeros([BOARD_SIZE, BOARD_SIZE], dtype=np.int8)
self.current_player = 1
def play(self, x, y):
# 判断当前位置是否为空
if self.board[x, y] != 0:
return False
# 落子
self.board[x, y] = self.current_player
# 检查胜利情况
if self.check_win(x, y):
return True
# 切换玩家
self.current_player = 3 - self.current_player
return False
def check_win(self, x, y):
# 检查行
for i in range(max(0, x - 4), min(BOARD_SIZE, x + 5)):
if np.all(self.board[i:i+5, y] == self.current_player):
return True
# 检查列
for i in range(max(0, y - 4), min(BOARD_SIZE, y + 5)):
if np.all(self.board[x, i:i+5] == self.current_player):
return True
# 检查正斜线
for i in range(max(x - 4, 0), min(BOARD_SIZE - 4, x + 1)):
j = y - x + i
if np.all(self.board[i:i+5, j:j+5].diagonal() == self.current_player):
return True
# 检查反斜线
for i in range(max(x - 4, 0), min(BOARD_SIZE - 4, x + 1)):
j = y + x - i
if np.all(np.fliplr(self.board[i:i+5, j-4:j+1]).diagonal() == self.current_player):
return True
return False
def __str__(self):
pieces = {1: '●', 2: '○', 0: ' '}
lines = [' '.join(pieces[x] for x in row) for row in self.board]
row_numbers = ['%2d' % i for i in range(1, BOARD_SIZE + 1)]
return '\n'.join([''] + row_numbers + [''] + lines + [''])
if __name__ == '__main__':
board = Board()
print(board)
while True:
# 玩家落子
x, y = input('请落子,格式为 x,y:').split(',')
x, y = int(x) - 1, int(y) - 1
if board.play(x, y):
print('玩家胜利!')
break
print(board)
# AI落子
empty_x, empty_y = np.where(board.board == 0)
scores = np.zeros([BOARD_SIZE, BOARD_SIZE], dtype=np.int32)
for i, j in zip(empty_x, empty_y):
for k in range(2):
board.board[i, j] = k + 1
if board.check_win(i, j):
scores[i, j] += 1000 if board.current_player == k + 1 else -1000
else:
scores[i, j] += np.sum(scores[max(0, i-2):min(i+3, BOARD_SIZE), max(0, j-2):min(j+3, BOARD_SIZE)])
board.board[i, j] = 0
best_move = np.unravel_index(np.argmax(scores), [BOARD_SIZE, BOARD_SIZE])
print('AI 落子:', best_move)
if board.play(*best_move):
print('AI胜利!')
break
print(board)
```
阅读全文