基于pytorch写出用于时序预测的添加注意力机制的Seq2Seq模型
时间: 2023-02-09 18:05:49 浏览: 132
注意力机制和Seq2seq模型
可以使用Pytorch中的nn.Module类来构建Seq2Seq模型。首先,需要定义编码器和解码器。编码器将输入序列编码为隐藏状态,而解码器将隐藏状态解码为输出序列。注意力机制可以在解码器中实现。
具体实现方法如下:
```python
import torch
import torch.nn as nn
class Seq2Seq(nn.Module):
def __init__(self, encoder, decoder):
super(Seq2Seq, self).__init__()
self.encoder = encoder
self.decoder = decoder
def forward(self, src, trg, src_len, trg_len):
encoder_hidden = self.encoder(src, src_len)
return self.decoder(trg, encoder_hidden, trg_len)
class Encoder(nn.Module):
def __init__(self, vocab_size, emb_size, hidden_size, num_layers, dropout):
super(Encoder, self).__init__()
self.embedding = nn.Embedding(vocab_size, emb_size)
self.lstm = nn.LSTM(emb_size, hidden_size, num_layers, dropout=dropout, bidirectional=True)
def forward(self, src, src_len):
embedded = self.embedding(src)
packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, src_len)
packed_output, (hidden, cell) = self.lstm(packed_embedded)
output, _ = nn.utils.rnn.pad_packed_sequence(packed_output)
return hidden, cell
class AttentionDecoder(nn.Module):
def __init__(self, vocab_size, emb_size, hidden_size, num_layers, dropout):
super(AttentionDecoder, self).__init__()
self.embedding = nn.Embedding(vocab_size, emb_size)
self.lstm = nn.LSTM(emb_size + hidden_size, hidden_size, num_layers, dropout=dropout)
self.linear = nn.Linear(hidden_size * 2, hidden_size)
self.out = nn.Linear(hidden_size, vocab_size)
self.attn = nn.Linear(hidden_size * 2, hidden_size)
self.v = nn.Linear(hidden_size,
阅读全文